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PREFACE 

The steric and electronic properties of phosphorus ligands are known 

to vary widely. This dissertation discusses work done during the study 

of the properties of different monocyclic and bicyclic phosphite esters 

and how these properties influence the catalytic activity of the NiL^ 

complexes which they form. 

X-ray, PES, and NMR studies of some selected aminophosphite 

compounds were carried out in order to understand how their unique 

structural and electronic properties could influence the catalytic 

properties of their NiL^ complexes. 

We were also successful in producing two new types of heterogenized 

NiL4 complexes which we hoped would have properties similar to that of a 

homogeneous NiL^ catalyst, yet would also have the desirable 

characteristics of a heterogeneous catalyst. 

In addition, this dissertation will describe the development of an 

analytical procedure for quantifying alcohols contained within a mixture, 

by means of a phosphorus derivatizing reagent. The actual analysis 

entailed the quantitative measurement of the phosphorus-containing 

alcohol derivative using ^^P NMR techniques. 

A list of compounds discussed in this dissertation is included in 

Table 1. 
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Table 1. Compounds described in this thesis 

OMe 

O-sec-Bu 
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Table 1. (Continued) 

p ^ O  
I 
OMe 

/o 
I 
OMe 

/ 

0-1-Pr 

/ 
0 

10 ^ 

OPh 

11 

12 

0 

Ao 

\ 0 
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Table 1. (Continued) 

13 

14 P / 

15 R 
y 

I 
O-i-Pr 

16 

17 

MegN^^ 

o N 0 

18 0 
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Table 1. (Continued) 

19 

20 

21 
Vv -—/ 

24 
( 

PClg 
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Table 1. (Continued) 

25 
to 
^0 / 

26 P 
— I 

0-1-Pr 

27 P 
— I 

0-i-Pr 

i-PrO 

28 
\ 

29 P 

CPh, 

30 
PhaC^ 
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Table 1. (Continued) 

7 

31 

CPh. 

32 PhgP-^f j/PPhg 

^ Ph^PO-^r lYoPPhg 

34 PhgP PPh, 

35 RhfPPhgigCJ 

36 r° 

O.-d-sec-Bu 
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iTabTe 1. (Continued) 

OMe 

38 

MeO ,0 
\/ Cr 

39 

/° 

P*>0 
I 
0 

40 (MeOjgPCl 

41 (MeOigPNMeg 

42 
/ r 

NMe. 
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Table 1. (Continued) 

43 

MegN; /O 
D ^ 0 

44 (MeOjgPfSejNMeg 

45 

MeJN  ̂ 0 

46 
c p 

II 
Se 

47 

Me.N >0 
2 \ / 0 

fl 
Se 

48 

Se 0 

1 ' 
NMe, 
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Table 1. (Continued) 

(C1CH2CH2)2N 

49 P 

CHgCHgCl 

\\/ 

OMe 

\/ 

0-i-Pr 
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OEt 
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PART 1: 

THE CATALYTIC PROPERTIES OF HOMOGENEOUS AND HETEROGENEOUS 

NIL* (L = PHOSPHITE) COMPLEXES 
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INTRODUCTION 

One of the most novel features of transition metals is their ability 

to adopt many different oxidation states. This is perhaps one of the 

most important factors in their capacity to act as catalysts in a variety 

of organic reactions (1,2). The ability of a transition metal to adopt 

lower oxidation states is facilitated by the coordination of electron 

soft ligands such as PR3, PfOR)], SR2, CO, CgHg, etc. 

In most cases, transition metals bind ligands in a manner which 

provides 18 electrons in their valence shell. These complexes are then 

said to be coordinatively saturated. In order for these complexes to act 

as catalytically active species, they must first dissociate one of their 

ligands to form electron deficient complexes. In most cases, these are 

16 electron intermediates which are then able to bind small molecules 

such as olefins, hydrogen, nitrogen, alkyl halides, etc. Upon 

coordination, these small molecules undergo changes in their electronic 

structure which facilitate their further reaction while coordinated to 

the metal atom. This feature is best illustrated by the pioneering work 

of Dewar, and Chatt and Duncanson (3,4) on the bonding of olefins to 

metal atoms. In their model, the electron density contained in the 

double bond is donated to the metal atom via a a bond while at the same 

time electron density is returned to the olefin through its anti-bonding 

orbitals. This redistribution of electron density is suggested by the 

observation of an increase in the C-C distance of the coordinated olefin 

compared to that found in the uncoordinated olefin (4,5). X-ray crystal-



www.manaraa.com

14 

lographic studies of olefin complexes such as Ni{CH2=CH2)(P(0-£-

C6H4CH3)3)2 and Ni(CH2=CH2)(PPh3)2 (5) have shown that the olefin loses 

its planarity upon coordination. This is indicative of extensive 

rehybridization of the olefinic carbon atoms from sp^ to sp^. It is the 

weakening of the olefin's double bond, which activates it toward 

reactions with other atoms and smaller molecules, such as H and CO, which 

are also bound to the metal atom. 

The ability of a transition metal to act as a catalyst depends very 

strongly upon the steric and electronic interactions between the ligands 

contained in the coordination sphere, of the metal atom. The electronic 

interaction between a ligand such as CO and a metal atom can also be 

described by the Dewar-Chatt-Duncanson model (Fig. 1) (4). In this 

model, a pair of electrons is donated to the metal atom from the CO 

Fig. 1. Bonding in transition metal carbonyl complexes 

ligand via a a bond. At the same time, electron density is returned to 

the CO ligand via a % bond formed by the antibonding orbital s of the CO 

and the d orbitals on the metal, which causes a weakening of the C-0 • 

bond. Support for this theory has been wel1-documented by the decrease 
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in the v(C=0) stretching frequency of CO upon coordination to metals such 

as Fe, Co, etc. (6). 

Back donation of electron density has also been postulated to occur 

in other ligands which contain atoms having low-lying unoccupied d 

orbitals, such as phosphorus, sulfur, arsenic and selenium. In the case 

of phosphorus, it has been known for many years that the donor-acceptor 

properties of the ligands are highly dependent upon the groups bonded to 

phosphorus (7). 

Tolman (8) has been able to quantify the contributions of these 

substituents from the donor-acceptor properties of phosphorus. The 

contribution of the substituent to the CO stretching frequency of 

various Ni(00)31 complexes, where L = PX1X2X3, has been quantified by the 

substituent additivity coefficient (x^) of X. The effect of this 

contribution on the Aj stretching frequency is given by equation 1. 

V(CO)Ai = 2056 +_Ex.cm-^ (1) 

The values of range from 0.0 for a _t-butyl group to 19.6 for a 

trifluoromethyl group. Clearly, the more electron withdrawing a group, 

the higher its value. It has also been observed that ligands which 

are good ir-acceptors also cause the A^ CO stretching frequency of these 

complexes to be higher. Of course, it is impossible to quantify the 

relative donor-acceptor properties of a phosphorus ligand solely on the 

basis of a single CO stretching frequency. In fact, it has been argued 
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that the phosphorus-metal a bond is the major factor in determining the 

v(CO) frequency for the CO ligands contained within the complex (9,10). 

Over the past several years many methods have been developed to 

quantify the donor properties (or basicity) of phosphorus. Protonation 

of phosphorus ligands with strong acids such as F3CCO2H, followed by 

subsequent ^^P NMR analysis have shown that Jp.y is related to the 

basicity of the phosphorus ligand (10). It has been argued (11,12) that 

the less basic the phosphorus ligand is, the higher the positive charge 

at the phosphorus nucleus. This increase in positive charge then causes 

an increase in the value of Jp_H upon protonation. 

Other workers have been successful in correlating phosphorus ligand 

basicity to the 31p_77gg values of their corresponding selenides (13), 

the Vg_|^ values of their borane adducts (14) and the 3^^ values 

found in W(C0)5L complexes (15,16). Recent work by Yarbrough and Hall 

(17) has shown that photoelectron spectroscopy can furnish information 

which distinguishes ir-acceptor and a-donor properties of a phosphorus 

ligand. The photoelectron spectra of LM(C0)5 where M = Cr, Mo and W and 

L = PEtg, PMeg, P(NMe2)3, P(0Et)3, P(0Me)3 or PF3 were reported. The 

authors compared the spectra of these complexes to that of the free 

ligands. Information on the 0 donor ability of the ligands was obtained 

by comparing the difference in the ionization potentials of M-P bond to 

that of the lone pair in the free ligand. It was assumed that the 

greater the donor ability of ligand, the smaller the difference in 

ionization potential of the M-P bond to that of the lone pair in the free 

ligand. This allowed them to rank the donor ability of these ligands 
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while complexed to the metal atom in the following order: 

PEtj- PMeg > P(0Et)3-P(0Me)3 > PfNMeg)] > PF3 

It should be noted that the relative order of PfOMe)] and P(NMe2)3 is 

opposite to what Cowley and co-workers (18) have found for the 

uncoordinated ligand.. The ir-acceptor abilities of these ligands were 

determined by the amount that the orbital s of the metal atom were 

split into e and b2 groups by the ligands. The amount of splitting of 

these orbital s by the ligands fell into the following order: 

PEtg^PMeg > PfNMeg)] > PfOEt)] - PfOMejg > PF^ 

This order is opposite to the order of increasing it-acidity based on 

electronegativity considerations. The switch in the order of P(NMe2)3 

and the phosphites in going from a basicity to Tr-acidity is attributed to 

the interaction between occupied and unoccupied orbitals on both 

phosphorus and its substituents. 

The steric properties of a phosphorus ligand have also been shown to 

be important in describing the overall properties of the ligand. Toi man 

and co-workers (19,20) has shown that the steric properties of the 

phosphorus ligand play a dominate role in influencing the position of the 

following equilibrium (Eq. 2). 

NiL^ + 4L' > Nil-(4.n) + (4-n) L' + nL (2) 

He has shown that the smaller the size of the ligand, the more stable the 

resulting complex is toward ligand replacement. In order to quantify 
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steric properties of a ligand, Tolman defines the ligand cone angle as 

the apex angle of a cylindrical cone, centered at 2.28A from the center 

of the phosphorus atom (Fig. 2). (This distance exemplifies the average 

distance found between a metal atom and a phosphorus ligand.) The cone 

is constructed so that it just touches the van der Waal s radii of the 

outermost atoms. The value of the ligand cone angle, which can be 

determined by using space-filling models, ranges from 101° for the rather 

nonsterically demanding P(0CH2)3CCH3 to 212° for the bulky P(mesityl)3 

ligand (Table 2). 

Having the ability to determine the electronic and steric properties 

of a ligand, one should be able to relate these properties to the 

reactivity of a metal complex containing these ligands, toward small 

molecules such as olefins, hydrogen, or CO, etc. With this knowledge one 

should be able to custom design a metal complex for use as a catalyst. 

A good example of how a ligand can influence a transition metal 

complex's catalytic behavior is perhaps best demonstrated by Wilkinson's 

catalyst. Wilkinson catalyst, Rh^PPhgjgCl, (21,22) is one of the best 

known homogeneous hydrogénation catalysts. The proposed mechanism of its 

role in the hydrogénation of an olefin is : 

Ligand dissociation 

Rh(PPh3)3Cl > Rh(PPh3)2Cl + PPh3 (3) 

Oxidative addition 

Rh^(PPh3)2Cl + H2 > Rh^^^H)2(PPh3)2Cl (4) 
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2.28 A 

Figure 2. Ligand cone angle as defined by Tolman (19) 
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Table 2. Various ligand cone angles for some selected phosphorus 
ligands (19,20) 

Ligand Cone Angle (°) 

P^OCHgjgCGHg 101 

PF3 104 

P(0Me)3 107 

PfOEt)] 109 

PCI. 124 

P(0-1-Pr)3 130 

P(0-o-tol)3 141 

P(NMe2)3 157 

P(mesityl), 212 
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Olefin addition and insertion 

Rh(H)2(PPh3)2C1 + CH2=CH2 > Rh(H)2(PPh3)2Cl(CH2=H2) (5) 

Rh(H)2(PPh3)2Cl(CH2=CH2) > RhH(PPh3)2Cl(CH2CH3) (6) 

Reductive elimination 

Rh(H)(PPh3)2Cl(CH2CH3) > Rh(PPh3)2Cl + CH3CH3 (7) 

In each of these steps, the properties of the phosphine ligand has a 

great effect upon this reaction since the analogous phosphite complex 

Rh(P{0Ph)3)3Cl has been shown to be completely inactive as a 

hydrogénation catalyst (21). At first, this difference was attributed to 

the greater u-acidity of the phosphite over the phosphine, which was 

believed to lower the amount of electron density on the metal, thus 

changing the metal's electronic properties. However, this difference in 

activity has more recently been attributed to the failure of a P(0Ph)3 

ligand to dissociate and provide an open site for coordination of 

hydrogen or an olefin (22). This failure to dissociate is a consequence 

of the reduced steric bulk of P(0Ph)3 compared to that of PPh3. This is 

borne out by the differences in the ligand cone angle of 128° to 145° for 

P(0Ph)3 and PPh3, respectively (Table 2) (19). 

Over the last two decades, our group has focused interest on the 

chemistry of various monocyclic, and bicyclic ligands exemplified by 

structures of the types below (12,23,24). A great deal of work has also 

been done to understand both the steric and electronic properties of 

these ligands (24,25,26,27). Based on our present knowledge of these 
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OR OR 

R = alkyl or aryl 

ligands it seemed reasonable to attempt to correlate these properties to 

the catalytic activities of some selected transition metal complexes 

which they form. 

The homogeneous catalytic isomerization of an olefin provides an 

excellent system to probe the effects of the properties of the ligand on 

the rate of catalysis by a given complex. This is due in part to the 

overall relative simplicity of the mechanism involved. 

The catalytic isomerization of olefins has been shown to proceed by 

two different mechanisms (1). The first involves a a-bonded alkyl 

intermediate which is formed by olefin insertion into a metal hydride 

bond. This is then followed by g-hydrogen elimination to give the 

isomerized product (Eq. 8). 

RCH2CH=CH2 + M-H > R-CHgCHCHg RCHkCHCHg + MH (8) 

M 

This mechanism requires the formation of a metal hydrogen bond followed 

by a 1,2-hydrogen shift. In most cases, the hydride is supplied by ei­

ther a protic acid or molecular hydrogen. Examples of catalytic systems 

which proceed via such a mechanism-are HGo(C0)4 (28), ((C2H4)2RhCl)2/HCl 

(29), t#M(P(0Et)3)4+ (30) and PtCl2(PPh3)2 SnCl4/H2 (31). 
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The second mechanism requires the formation of a tt or a allyl-metal 

intermediates. The %-aTlyl metal hydride mechanism proceeds via reaction 

( 9 ) .  

M 
+ 

RCH„CH=CH, 

H 
I 
M 

RCH l,CHL 
W// 2 

A 

RCH=CHCH, ( 9 )  

This mechanism was shown to be operative in the isomerization of ally! 

alcohol to propionaldehyde by Fe(C0)5 (32). Further, deuterium labeling 

experiments by Hendrix and co-workers (33) confirmed the existence of a 

1,3-hydrogen shift, required by the m-allylic mechanism. 

Green and Hughes (34,35) proposed a modification of this mechanism 

which involves the formation of a a-bonded allyl intermediate (Eq. 10). 

M 

H 

_ / 

H 

H -H f M 

(10) 

This mechanism requires the metal atom to insert into C-H bond followed 

by elimination of the metal to reform a new C-H bond with concurrent 

isomerization of the double bond. This mechanism has been substantiated 

by the thermal rearrangement of and n'*-3-methyl ene-4-yi nyldihydro-
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furan-2(3H)-one complexes of iron(O) (Scheme 1) (34). Optically active ̂  

in Scheme 1 rearranges regiospecifically, but with extensive racemization 

in the formation of C_ and D_. Green and Hughes (35) contend that this 

racemization can only occur by means of a terminal a bonded allylic 

intermediate B_. 

In 1970 C. A. Tolman reported that under strongly acid conditions 

Ni(P{0Et)3)4 could be protonated (36), It was found that protonation of 

the complex labilized a triethyl phosphite ligand. It was shown by 

spectrophotometric methods that the rate constant increased from 4.9 X 

10"® sec'l to 1.5 X 10"^ sec'l for the dissociation (Eq. 11) of 

Ni(P(0Et)3)4 upon addition of acid. Further work has shown that the 

HNi(P(0Et3)J -—> HNi(P(0Et)3)3 + PfOEt)] (11) 

protonated nickel complex can efficiently isomerize 1-butene via the 

mechanism proposed in Scheme 2 (36,37). Both spectrophotometric and 

NMR (30) analysis indicate that the protonation of Ni(P(0Et)3)4 is 

extremely facile. However, the rate-determining step was found to be the 

dissociation of a P(0Et)3 ligand to form the coordinatively unsaturated 

species, HNi(P(0Et)3)3. Dissociation of a P(0Et)3 ligand is probably 

facilitated by weakening of the nickel-phosphorus bond. This is due in 

part to the decrease in ir back donation to the phosphite ligand from the 

metal, caused by the coordination of the proton to the nickel. This was 

borne out by the work of Gultneh (38). which showed that complexes such as 

Ni(11)4 were protonated to a small extent in solution. It is thought 
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CH.OH 
+ FegfCOjg 

Fe-H 
(CO), 

(CO)^Fe 

V 

Me j 
Fe(CO), 

Fe(CO). 

p A 
Scheme 1. The mechanism of isomerization of TI and ^ -3-methylene 

-4-vinyl dihydrofuran-2(3H)-one complexes of Fe(0). Note, 
R groups on compounds succeeding A left off for clarity 
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CH2CH=CHCH 

CHgCH^ZNifPfOEt),)]* 

NifPfOEt),), 

H 

P(OEt). 

HNifPfOEt)])* CH2=CHC2Hg 

({EtO)^P).Ni-" 

y"2 
CHCgHg 

(P(OEt).) 

V "  
.CH 

C"3 C2"5 

Scheme 2. The mechanism for the isomerization of 1-butene using 
acidified NitPfOEt)])^ (19) 
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that the high ir-acceptor capacity of _n sufficiently lowers the basicity 

of nickel, thus causing it not to be protonated. 

The ro\e of the acid in this catalysis mechanism is that of an 

initiator. Tolman has shown (36) that in D2SO4/CH3OD solutions, DNiL^* 

forms rapidly. However, the deuterium is found in only 1 out of 120 

isomerized butene molecules. This indicates that the nickel atom 

exchanges the deuterium atom for a proton in the isomerizing olefin. 

Subsequent coordination of a nondeuterated l-butene which results in the 

formation of nondeuterated 2-butene. The protonated nickel atom can only 

redeuterate after it has recaptured a free phosphite ligand to form 

HNiLg* which is then able to exchange with the solvent.^ 

As much as the acid is the key to starting up the catalytic, 

mechanism, it is also the key to ending it. Deactivation of the complex 

toward catalysis is known to occur via two pathways. 

1. Oxidation of the zero-valent nickel atom to Ni(II). Calculation 

of the EQ potential for (Eq. 12) yields 0.25 volts. 

Ni(0) + > Ni (II) + Hg . (12) 

2. Acid-catalyzed solvolysis of dissociated ligands. Examples of 

acid catalyzed solvolysis of alkyl phosphites have been known for 

many years (Eq. 13) (39). 

P(0R)3 + HV > H(0)P(0R)2 + RX (13) 
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This reaction should be important in the catalysis mechanism since the 

dissociation of a P(0Et)3 ligand takes place in a highly acidic medium. 

One might expect that this reaction would favor an increase in the 

catalysis rate because it shifts the dissociation equilibrium toward 

HNiL] species. However, in actuality it is presumed that further 

dissociation takes place leading to the formation of HNiL^ and HNiL* 

species which are more readily oxidized to Ni(II) in the highly acidic 

media. 

Armed with this basic information, Gultneh and Verkade began a study 

of the catalytic properties of various NiL^ complexes where L is'a 

monocyclic or bicyclic phosphite ligand. One of the most Important 

findings of this study was that small changes in the structure of the 

phosphite leads to a large increase in the rate of catalytic 

isomerization of 3-butenenitrile (Table 3). As can be seen in Table 3, 

the amount of catalysis is maximized for ligands which have methyl groups 

in the 4,6 equatorial positions. The increased rate of catalysis by the 

ligand in the NiL^ complex was found to follow the trend: 

OR OR OR OR 
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Table 3. Rates of catalytic isomerization of 3-butenenitrile by MiL./acid (1/10) systems in 
benzene at 25°c as a function of the size of the exocyclic phosphorus substituent (38) 

NiL^/FgCCOOH NiL^/ClgCCOOH 

cyclces cycles 
over cis/trans over cis/trans 
initial ^ (2-butene- Initial . (2-butene 
30 min 1/2 (min) nitrlle) 30 min 1/2 nitrile) 
(±3) (±0.2 min) (±0.2) (±3) (±0.2 min) (±0.2) 

I 
OR 

R = Me (5.0 min)bG <1.0 1.5 107 8.0 1.7 

R = n-Pr (4.0 min) <1.0 1.6 110 7.5 1.6 

R = 2-Pr (3.0 min)b <1.0 1.5 115 7.0 1.6 

R = _t-Bu (5.0 min)C <1.0 1.5 104 8.0 1.5 

R = sec-Bu (5.0 min)d <1.0 1.7 104 8.0 1.7 

R = 2-bornyl 20 >8 hrs 1.6 10 12 hrs 1.5 

R = 1-menthyl 20 >8 hrs 1.4 10 12 hrs 1.6 

R = a-(methoxy-
carbonyl)benzyl 0 
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1 
OR 

R '= Me 92 12.0 1.4 62 30.0 1.7 

R = 1^-Pr 108 8.0 1.6 68 29.0 1.5 

R.= t-Bu 96 9.0 1.5 64 29.0 1.5 

R = _lj-bomyl 0 — — o — — 

R = J_-nienthyl 0 -- -- 0 — — 

R = «-(methoxy-
carbonyl )benzene 0 — — 0 — 

P(0He)3 74 15.0 1.3 52 40.0 1.7 

P(OEt)g 52 38 1.4 28 115 1.6 

P(0-1-Pr)g 35 7 hrs 1.3 25 8 hrs 1.4 

®[acid];[NiL^]:[olefin] = 10:1:124 

^On Increasing the substrate to complex ratio to 992, a rate of 640 cycles In 30 min was 
obtained. 

^Under the conditions in footnote b, a rate of 740 cycles in 30 min was obtained. 
^Under the conditions In footnote b, a rate of 680 cycles in 30 min was obtained. 
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Table 3 (Continued) 

cycles 
over 
initial 
30 min 
(±3) 

NIL4/F3CCOOH 

cis/trans 
(2-butene-
nitrile) 

(±0.2 min) (±0.2) 
tj^2 (min) 

r" 
OR 

R = Me 60 

R = Et 0 

R = i-Pr 0 

R = jt-Bu 0 

R" = l-bornyl 0 

R = 1^-menthyl 0 

R = «-(methoxy-
carbonyl)benzene 0 

35.0 1.4 

NILq/ClgCCOOH 

cycles 
over cis/trans 
Initial . /mini (2-butene-
30 min ^1/2 nitrile) 
(±3) (±0.2 min) (±0.2) 

30 110 1.6 

0  —  —  — —  

0  —  —  — —  

0 — *- —— 

0 — — —— 

0  —  —  — —  

0 
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S 
OR 

R »= He 92 12.0 

R =1-Pr 108 8.0 

R = t-Bu 96 9.0 

R = 1^-bornyl 0 

R = ^.-menthyl 0 

R = a-(methoxy-
carbonyl)benzene 0 

PfOMelg 74 15.0 

P(OEt)g 52 38 

P(0-i-Pr)g 35 7 hrs 

1.4 

1.6  

1.5 

62 

68 

64 

0 

0 

30.0 

29.0 

29.0 

1.7 

1.5 

1.5 

1.3 

1.4 

1.3 

52 

28 

25 

40.0 

115 

8 hrs 

1.7 

1.6 

1.4 
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For complexes containing 4-methyl or 4,6-dimethyl groups, the catalysis 

rate was found to be maximized when an isopropoxy group was in the 

exocyclic position. Complexes with ligands which contained either 5,5-

dimethyl groups or no substitution at all were found to be active only 

when a methoxy group was in the exocyclic position. These differences 

were explained on the basis of increased steric interactions which 

favored dissociation in complexes with ligands containing 4,6-dimethyl 

groups. 

Studies also revealed that the amount and type of acid used had a 

great effect on the overall catalysis rate. Maximum rates of 

isomerization were observed when a ratio of 10 H"*" to 1 Ni was used. At 

higher ratios there was a marked decrease in the rates of catalysis, 

probably due to an increase in the amount of solvolysis of the 

dissociated ligand. The effect of solvolysis of the ligand is that more 

dissociated nickel species, such as NiL2 and NiL are produced in 

solution. These complexes are more easily oxidized than the NiL^ 

complexes by the acid to catalytically inactive Ni(II) species. It was 

also found that for a given complex the amount of catalysis increased 

with the type of acid used, according to the trend: 

F3CCOOH > CI3CCOOH > H3CCOOH 

This is reasonable since protonation of the complex is expected to 

increase with increasing acid strength. Protonation of these NiL^ 

complexes can be observed by NMR. All of these complexes show single 

peaks in the NMR spectrum in the narrow region of 155 to 150 ppm 
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relative to H3PO4. Upon addition of acid to the solution containing the 

NiL^ complex, a characteristic yellow color develops, indicative of 

protonation. Subsequent low temperature NMR analysis shows the 

formation of a doublet in the range from 134 to 128 ppm with a of 

29-39 Hz. This range of coupling constants has been observed in other 

compounds that have hydrogen coupling to phosphorus through a metal atom 

(40). 

In all cases, the effect of adding excess ligand retards the rate 

and extent of catalysis. This is most pronounced for the least catalyt-

ically active system, 'Ni (11 )/|/F^CCOOH. This agrees with the belief that 

the most catalytically active systems are those which have the most 

extensive ligand dissociation. Excess ligand would decrease the amount 

of dissociation to a greater extent in a less easily dissociated system. 

Throughout the initial study it was shown that ligand basicity was 

very important in determining whether a particular complex acted as an 

efficient catalyst. Complexes of ligands such as and were shown to 

protonate to only a small extent (~5%) with F3CCO2H (in benzene or 

methylene chloride). This small extent of protonation was shown by the 

failure of solutions containing these compounds to turn yellow in color 

upon addition of acid and the appearance of a doublet of relatively small 

intensity for the protonated species compared to the large singlet which 

is observed for the unprotonated NiL^ complex. This lack of protonation 

is due in large part to the reduced phosphorus basicity of the ligand and 

the subsequent decrease in the overall nucleophilicity of the complex. 

The decrease in basicity of these ligands has been evidenced by their 
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higher Jp_^ values when protonated, the higher 77^ values for their 

corresponding selenides, and the higher Vqq values found in their 

Ni(00)31 complexes (38), compared to the corresponding values for the 

more basic ligands, ^ and 2, which are known to form NiL^ complexes that 

fully protonate in solution (38). 

The decreased basicity of _n_ has been explained via the concept of 

increased molecular constraint (12). As can be seen in Fig. 3, the 

oxygen p orbital s in the bicyclic phosphorus ester are orthogonal to the 

phosphorus lone-pair, resulting in minimal interaction between the lone-

pairs. This in turn causes a decrease in the energy of the phosphorus 

lone-pairs thus making the lone pair less polarizable by electron 

acceptors such as H"*" and BH3. At the same time, geometrical constraint 

of the P-O-C linkage causes, the oxygen lone pairs to rehybridize from sp^ 

to sp^ resulting in a reduction of phosphorus-oxygen dir-pir overlap 

(41). This reduction in overlap results in a decrease in the amount of 

electron density that is returned to phosphorus, thus causing an increase 

in the amount of positive charge on phosphorus. It is the combination of 

the orthogonality of the lone-pairs and the effects of molecular 

constraint which results in the decrease in basicity of 11 (12,42). 

A significant result of these studies (38) was that Lewis acids such 

as AICI3, ZnCl2 and TiClg were found to act as efficient cocatalysts in 

place of protic acids, such as F3CCO2H. AICI3 was found to act as 

efficiently as H"*" in terms of the amount of isomerization catalysis 

observed over the course of thirty minutes. 
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Figure 3. Geometric arrangement of the P, 0, and C 
atoms and the ester oxygen p orbital s in a 
bicyclic phosphorus ester (X = lone pair or 

oxygen) if sp^hybridization is assumed (12) 
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Gultneh reports that for AICI3, the catalytically active species is 

formed from a NiL^zAICTg adduct. Evidence for this adduct is based upon 

the appearance of a band in the visible spectrum of a NiL^/AlClg mixture 

in CH2CI2 nm) which is similar to that observed for the HNiL^ 

species. Gultneh postulates (38) that ligand dissociation to form a 

catalytically active species occurs upon formation of a positively 

charged nickel-aluminum intermediate (Eq. 14). The only evidence given 

NiL^ + AICI3 4. L^NiiAlClg + L^NiAlClg+Cl" -»• L^NiAlClg'^'Cl" + L (14) 

for  the existence of such an intermediate is the extremely low molar 

conductance of 15.4 ohm"^ cm^ mole"^, which was observed for complex 

Ni{^)4 and AICI3 in CH3CN. However, this result still does not rule out 

the possible formation of a NiL^zAlClg adduct which is somehow involved 

in the catalytic machanism, since examples of nickel complexes that form 

adducts with Lewis acids are known. Examples of these types of complexes 

are the following (43,44): 

(PhgP^gNizAltCHg)^ (CHg)^^ Ni:Al(CH3)3 

However, an alternate explanation of the role of a Lewis acid in 

isomerization catalysis will be described in this thesis. 
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Hydrocyanation of olefins 

The catalytic hydrocyanation of olefins has been an area of interest 

to industrial chemists for many years. This interest has grown primarily 

because of the economic value in producing compounds such as 

acrylonitrile and adiponitrile from the hydrocyanation of ethylene and 

1,3-butadiene, respectively. As a result, much of the data on this 

reaction are found in the patent literature (45,46). A recent review by 

Brown (47) lists many examples of transition metal complexes that are 

capable of catalyzing the addition of HCN to olefins. For example, 

Ru(PPh3)3Cl2 (48) and Co2(C0)g (49) are both known to catalyze the 

hydrocyanation of CH3CH=CHCH2CN to NC(CH2)4CN and CH3CH(CN)(CH2)2CN. 

Co2(C0)gL2 (48) (where L = PPh3 or P(0Ph)3), is known to catalyze the 

hydrocyanation of norbornene (Eq. 15). 

There are even more examples of hydrocyanation catalysts which contain 

phosphite ligands. In particular, complexes such as CoH(P(0Ph)3)4 (50), 

Ni(P(0R)3)4 (51), Pd(P(0R)3)4 (52) and Mo(P(0Ph)3)3(C0)3/TiCl3 (53) have 

been shown to be effective hydrocyanation catalysts. 

The mechanism of hydrocyanation has yet to be totally elucidated but 

the results of experiments seem to imply the following mechanism (47): 

CN. 

(15) 

M + HCN + H-M-CN (15) 
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H-M-CN + olefin H-M(ir-olefin)(CN) 

H-M(iT-olefin)(CN) a-alkyl-M-CN 

a-alkyl-M-CN + a1kyl-CN + M 

(17) 

(18) 

(19) 

The last step in the mechanism has been a source of dispute. 

Kwiatek and co-workers (54,55) have proposed, based upon work with the 

formation of alkyl nitriles from alkylpentacyanocobaltate(III), that 

equation 19 should be rewritten: 

This step is believed to occur via protonation of the coordinated cyanide 

ligand to form a coordinated hydrogen isocyanide. The isocyanide group 

then inserts into the metal alkyl bond and then decomposes to form an 

alkyl nitrile and a protonated metal species (Scheme 3). 

a-alkyl-M-CN + HCN ^ o-alkyl-M(HNC)CN 

NH 

alkyl-CN + H-M-CN -c o-alkyl-C-M-CN 

Scheme 3. Decomposition of a-bound metal alkyl cyanide species to form 
alkyl nitriles (47,53) 

The reason for the use of phosphite ligands rather than phosphines in 

these catalysts may be due in part to the increased 7r-acidity of the 

phosphite which causes the phosphite to impair the extent to which CN" 

complexes to the metal atom. Other studies have shown that these metal 

a-alkyl-M-CN + HCN alkyl-CN + H-M-CN (20) 
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complexes are eventually inactivated as catalysts due to formation of 

metal cyanide compounds such as Ni(CN)2 (47) and Co(CN)g"^ (49). The 

decomposition is also inhibited by adding excess ligand which again 

impedes the formation of these compounds. It has also been reported 

(56,57) that Lewis acids such as ZnClg act as efficient cocatalysts in 

hydrocyanation. Though the mechanism of its activity is not known, it is 

believed that the ZnCl2 in the presence of HCN promotes formation of the 

catalytically active species [HNiLp]''"[ZnCl2CN]". 

Gultneh (38) has carried out a study of the use of the previously 

mentioned NiL^ complexes as hydrocyanation catalysts. The trend observed 

for increased amounts of hydrocyanation of olefins such as allylbenzene, 

norbornene, norbornadiene, cyclopentene and cyclooctene with various 

monocyclic ligands was : 

OR OR 

In- the case of the 4-methyl and 4,6-dimethyl-l,3,2-dioxa-

phosphorinanes it was observed that by increasing the size of the 

exocyclic group from methyl to isopropyl, there was an increase in 

catalytic activities of the NiL^ complexes. The extent of catalysis was 

found to decrease when larger groups such as menthyl or bornyl were 

placed in the exocyclic positions on the phosphorinane ring. However, 

the rates of catalysis still proceeded moderately. This was not the case 

in isomerization of 3-butenenitrile wherein such large groups completely 
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deactivated the complex. Attempts to form catalytically active complexes 

for the hydrocyanation of olefins with bicyclic and 5-membered ring 

cyclic phosphite ligands proved to be unsuccessful. This is probably due 

in part to the reduced overall basicity of these ligands which in turn 

reduced the basicity of the NiL^ complexes. Since HCN is itself such a 

weak acid, the degree to which the nickel atom is protonated is further 

reduced. The combination of these effects probably led to the inactivity 

of these complexes. 

Previous work has shown that the more active catalyst systems for 

the hydrocyanation of olefins are those which contain Lewis acids (48). 

Gultneh (38) found ZnCl2 to be the most active cocatalyst. Attempts to 

use AICI3 as a cocatalyst in the hydrocyanation of norbornene showed that 

the AlClg/NiL/^ catalyst mixture produced half the number of catalytic 

cycles as did the ZnCl2/NiL4 mixture. In attempts to hydrocyanate 

allylbenzene, the AlClg/NiL/;, mixture proved be to completely inactive, 

while the ZnCl2/NiL4 showed some activity. The failure to hydrocyanate 

any of the allylbenzene by NiL^/AlClg was in part due to the complete and 

facile isomerization of the allyl benzene to the more stable conjugated 

product, 1-phenylpropene. This isomerization occurred before any 

appreciable amount of hydrocyanation could take place. 

As stated previously, the degree of isomerization of 3-butenenitrile 

was reduced upon adding excess ligand to the catalyst mixture. During 

the hydrocyanation of olefins, it was found that in many cases the rate 

of catalysis increased when excess ligand was added. However, it was 

also observed that the optimum amount of excess ligand added depended 
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entirely on the ligand used. The optimum ratio of L/NiL^ varied from 3 

for Ni(P(0Et)3)4 to 18 for NiThe reason for adding excess ligand 

is to prevent complexation of more than one molecule of HCN to the nickel 

atom as suggested by the mechanism (Eqs. 21-26) of Gultneh (38) for the 

deactivation of the NiL^ catalyst. 

HCN + Zn+2 > ZnCN+ + H"^ (21) 

NiL^ + H"^ > HNiL^* . (22) 

HNiL^^ > HNiLg* + L (23) 

HNiLg* > HNiLg* + L (24) 

HNiLg^ + HCN > HNiLgCN + H"^ (25) 

HNiLgCN + HCN > NiL2(CN)2 + Hg (26) 

Formation of complexes such as NiL2(CN)2 would force the catalysis to 

stop due to the irreversible oxidation of the NiL^ complexes to these 

Ni(II) species. 

Unanswered questions in Gultneh's work 

Though quite extensive, Yilma Gultneh's work left some unanswered 

questions: 
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1. Tolman had been very explicit in proving that steric factors were 

extremely important in determining the extent of dissociation in NiL^ 

complexes. However, it would seem reasonable that electronic effects 

should have some role in the catalytic properties of a given NiL^ 

complex. The question was raised if it would be possible to isolate this 

electronic effect by selectively comparing the catalytic activity of some 

NiL^ complexes containing ligands that were heretofore untried. Until 

now only complexes which contained ligands that had alkoxy exocyclic 

groups had been tried. We were interested in how the replacement of an 

alkoxy group by an amine group in the exocyclic position of the ligand 

would change the activity of the resulting complex. This was of special 

interest since the electronic properties of these types of ligands have 

been found to be markedly different from those with alkoxy exocyclic 

groups (58). 

2. In explaining the catalytic properties of the NiLg (ZnCl2 or ' 

AlClg) system for the isomerization of olefins, Gultneh (38) proposed 

that the catalytically active intermediate was a dissociated 

[NiL^ZnCl''']Cl" complex or an NiL^iAlClg adduct. However, the evidence 

for the existence of these intermediates was tenuous at best. It was 

necessary to prove concretely the existence of these intermediates or 

else develop an alternative mechanism which could better explain the 

results that had been obtained. 

3. Mosbo (58) had shown that 1,3,2-dioxaphosphorinanes existed as 

two different conformational isomers, A and B. 
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OR 

A B 

It was shown that when the exocyclic group was an alkoxy group, 

conformation A was the more thermodynamically stable isomer. Isomer B 

was considered to be the thermodynamically more unstable isomer since the 

lone-pair on phosphorus was repelled by two lone-pair p orbitals on each 

of the two cyclic oxygens. A consequence of this isomerism is that the 

basicity of these isomers are different. Previous work has shown that 

isomer B is more basic than isomer A (59). This increase in basicity has 

been ascribed to lone pair interactions which raises the energy of the 

phosphorus lone pair thus making it more polarizable. Gultneh (38) 

contends that large exocyclic groups on these 1,3,2-dioxaphosphorinanes 

are forced to adopt an equatorial position, with respect to the ring, due 

to steric interactions with the other ligands contained in the complex. 

This would then change the basicity of the ligand which could then 

influence the catalytic activity of the complex. In order to prove or 

disprove this contention, we deemed it worthwhile to attempt an x-ray 

structural analysis of a NiL^ complex which contained a ligand with a 

large exocyclic group. This was done in order to determine if the ligand 

was forced to adopt the more basic conformation due to steric 

interactions. 

An x-ray structural analysis of one of these complexes would also be 

helpful in determining if there are indeed steric interactions between 
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the 4,6 methyl groups on adjacent ligands, which would promote ligand 

dissociation. 

4. Gultneh has shown that there is a 20 fold increase in the 

catalytic activity of Ni(2)4 versus its acyclic analogue, 

Ni (P(0-_i_-Pr)3)4. In order to investigate the effect of geometrical 

constraint on the P-O-C angles in the cyclic 4,6-dimethyl phosphorinanes 

and how that effect influences the catalytic properties of a NiL^ 

complex, it was thought useful to prepare the phosphinite analogues ^ 

and As can be seen in Table 4, there is a marked decrease in the 

difference in catalytic activity of the NiL^ complexes of the phosphinite 

ligands versus the phosphite ligands. It was suggested (38) that there 

is only a small difference in the steric requirements of 9_and P(0-J-

Pr)]. Therefore, it was thought that the differences in the catalytic 

activities of the complexes could be attributed to small differences in 

the electronic properties of the ligands in going from P(0-J_-Pr)3 to 2-

In describing the properties of Gultneh (38) gives no 

information about the distribution of conformational isomers. It is 

known (60) that analogous phosphorinanes do show a conformational 

equilibrium between conformers (Eq. 27). 

R 
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Table 4. Rates of isomerization of 3-butenenitrile by NILA/FOCCOOH 
systems in benzene at 25°^ (38) 

Cycles over cis/trans 
L 30 min (2-butenenitriles) 

(±2)  (±0.1)  

Â1 32 1.0 

_28 36 1.1 

P(0-1-Pr)3 35 1.3 

9 740 1.6 

®Ni/H'*"/3-butenenitrile = 1/10/124 

The equilibrium position is determined in part by the steric bulk of 

the exocyclic R group. Quin and Featherman (60) have shown that when R = 

CH3, the equatorial conformation is preferred by only a small margin 

(ke/a=2.03). Therefore, in the case of ^ and ^ it should be reasonable 

to assume that a similar isomeric distribution between equatorial and 

axial isopropoxy groups should exist. Since the literature provided no 

information on the conformational distribution of these cyclic 

phosphinites, it was thought to be important to determine this first and 

then attempt to separate^ fromOnce this separation was completed, 

it would be possible to prepare NiL^ complexes of both isomers and 

investigate any differences in their catalytic activities. In fact, by 

using a mixture of isomers it would be possible to prepare up to five 

different complexes of the type Ni(27)4_p(28)p where n = 0,1,2,3,4. 

Since separation of these complexes would be difficult, there would be no 
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way of knowing if either ligand caused the complex to be more active than 

the other. 

5. The use of optically active ligands in transition metal catalysts 

used for asymmetric synthesis has become very important (61,62). It was 

found that Ni(acted as catalyst for the asymmetric isomerization 

of prochiral olefins (Eq. 28). 

Ni((-)-%) ̂  * 
CH„CH„(CH,)C=CH,CH,CN —> CH,CH„(CH-)CHCH=CHCN (28) 

FgCCOgH/CgHg  ̂ à 6 

25 OC 

By the use of chiral shift reagents, it was determined that a 52% 

enantiomeric excess for (Eq. 28) had been obtained. It was thought that 

by using an optically active ligand which contained a methyl group at the 

equatorial 4,6 positions, a higher degree of conversion and enantiomeric 

excess might be obtained. The use of Ni(36)4 as an asymmetric 

isomerization catalyst in equation 28 will be detailed herein. 

6. The use of NiL^ complexes (where L = 2-alkoxy-l,3,2-

dioxaphosphorinane) as efficient hydrocyanation catalysts are now well 

documented (38). However, the use of these complexes in hydrocyanating 

1,3-butadiene to form adiponitrile had yet to be explored. Due to its 

industrial applications, it was of interest to see if our best 

hydrocyanation catalysts, Ni(^)4 and Ni(2)4 could assist in the 

production of adiponitrile from 1,3-butadiene. 

Heterogenized homogeneous catalysts 

The use of catalysts in chemical reactions has become one of the 

most important areas of chemical research (63). When discussing this 
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area, one must differentiate between two main classes; namely, 

heterogeneous and homogeneous catalysis. Heterogeneous catalysis implies 

that the catalytic reaction takes place at the interface of two or more 

phases. For example, in the catalytic hydrogénation of an olefin by a 

metal, studies have shown that the actual reaction takes place at the 

interface of the gas and solid phases (63). Homogeneous catalysis 

usually implies that the reaction occurs in the same phase, as is the 

case when the catalyst and reactants are dissolved in a solvent. As can 

be seen in Table 5, the advantages and disadvantages of both types of 

catalysis are numerous. In recent years, many reviews have been 

published which detail previous attempts to prepare heterogenized 

homogeneous catalysts in which a transition metal complex, which is known 

Table 5. Relative advantages and disadvantages of different types of. 
catalysts 

Type of 
catalysis Advantages Disadvantages 

Heterogeneous 1. ease of separation 1. lack of knowledge of 
2. high mechanical strength actual active sites 
3. high activity 2. limited access to 
4. use in packed and catalyst's active site 

fluidized bed reactors 3. High temperatures and 
pressures needed 

Homogeneous 1. well documented mechanis- 1. difficult to separate 
tic information available catalyst from reaction 

2. mild operating conditions mixture 
3. electronic and steric 2. catalysts tend to be more 

properties of ligands can sensitive to O2, H2O and 
be changed to improve temperature 
catalysis 
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to act as a homogeneous catalyst, is bound to a solid support 

(64,65,66). These hybrid catalysts have been shown to possess properties 

which incorporate the best features of each class of catalyst, while at 

the same time reducing some of the disadvantages of both. In particular, 

it has been found that these hybrid catalysts allow for easy separation 

of the catalyst from a reaction mixture, in some cases resulting in a 

reduction in the loss of valuable preciotis metal catalyst. At the same 

time, these catalysts are often more durable than their homogeneous 

analogues, allowing for in some cases several recycles of the supported 

catalysts (66). 

Two basic types of solid supports have been used to anchor 

homogeneous catalysts. The first type includes organic polymer supports, 

usually consisting of a polystyrene divinyl benzene resin which is 

functionalized with phosphine, cyclopentadiene, bipyridyl, or benzene 

ligands. Equation 29 illustrates a common technique used to prepare 

these types of functionalized supports. 

> -(CHgCH)- + LiPPhg—^-(CHgCH)- (29) CI 2 

PPh CI 

The metal complex is then anchored on the support by exchanging one 

of its ligands with a -PPh2 group. Grubbs and co-workers have used this 

technique to heterogeni/e Rh(PPh3)3Cl (67). This type of support has 
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(70), to cite just a few of many examples. 

Polystyrene-divinylbenzene co-polymers have also been used to 

directly bind metal carbonyls such as CrfCO)^ (Eq. 30). • 

[-(CH2CH2)-(CHpCH)-]^ 4Cr(C0)g > [-(CH2CH2)-(CH,CH)-]^ + 3C0 (30) 

Complexation has been accomplished by subjecting a mixture of polystyrene 

resin, metal carbonyl, and solvent, to conditions such as heat (71), high 

pressure (72), and ultra violet radiation (73). 

Pittman (73) and Masuda and Stille (74) have been successful in 

forming heterogeneous catalysts by polymerizing soluble metal complexes 

which contain ligands having functionalities such as olefins. Stille has 

also been successful in producing polymers which contain optically active 

ligating groups that can bond to certain metal complexes. These polymers 

have been used successfully as catalysts for asymmetric synthesis (75). 

One of the advantages of these catalysts is their ability to 

stabilize complexes which are not stable in solution. Gubtosa and 

Brintzinger (76) have shown that a Fe(C0)2H unit can be stabilized on 

cyclopentadienyl functionalized polystyrene (Eq. 31). The resulting 

Cr(C0)3 

P -CHg-CgH^ + FegfCOXg > P -CH2-Ti5-CgH^-Fe(C0)2H (31) 2 "5 

P = polymer backbone 
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anchored complex has been found to be indefinitely stable, whereas in 

solution, (n^-CgHg)Fe(C0)2H quickly dimerizes with subsequent loss of 

hydrogen to form [(n5-CgH5)Fe(C0)2]2 (76). They have also shown that a 

Co(C0)2 unit can be supported similarly, by reaction of the 

cyclopentadienyl-derivatized resin and Co2(C0)g. Subsequent irradiation 

of the polymer causes a loss of CO to form a bis-arene complexed cobalt 

resin (Eq. 32): p 

P-CHp-fn^-CgH^) —Co(C0)2 ^ ^ ^ ^ 

P = polymer V^lyn (32) 

CH2-(n^-C5H^)-Co 

Whereas, complexes of the type n^-(C5H5)2Co2(C0)2, n^-(C5H5)2Co2(C0)3, 

and n^(C5H5)Co3(C0)3 were observed to form upon irradiation of solutions 

containing the homogeneous analogue n^-(C5H5)Co(C0)2 (77). Thus, these 

types Of polymers can be used to stabilize metal moieties that would be 

otherwise unstable in solution. This provides the possibility of 

producing new types of catalysts that could not be obtained by any other 

means. 

One of the main disadvantages in the use of these catalysts is that 

the rates of catalysis are often lower than those observed for the 

analogous homogeneous catalysts. Pittman and co-workers (78) have shown 

that Cr(CO)g can be supported on polystyrene and that methyl sorbate can 

be hydrogenated with such a catalyst (Eq. 33). At 160°, the selectivity 
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COgMe 

\yr=\ yCOpMe 
HG 140-150° V V 2^ 

500 psi 

COgMe 

'COgMe (33) 

for (Z)-methyl-3-hexenoate is 96-98% for 100% conversion in 24 hrs, while 

at 140° the selectivity is 99%. . Cais and co-workers (79), however, have 

reported 95% conversion for the hydrogénation of methyl sorbate using 

Cr(C0)5 under the same conditions in only 7 hrs. Pittman and co-workers 

(80) have also reported a retardation in the rate of hydroformylation of 

1-pentene using RhfPPhgïgHfCO) bound to polystyrene. It was found that 

at 40° and 250 psig, the polymer-bound Rh^PPhgjgHfCO) was 0.22 times as 

active as the homogeneous catalyst. While at 60° and 800 psig the ratio 

of activity increased to 1.08. It has also been found (80) that the rate 

at which anchored Ni(PPh3)2(C0)2 cyclooligomerizes butene at 112°C is 

equal to the rate at which the analogous homogeneous catalyst operates at 

90°. 

These reductions in catalysis rates have been ascribed to 

diffusional limitations created by the resin for migration of the 

substrate into the active site. The rate of diffusion is dependent upon 

the pore size within the resin which in turn is dependent upon the amount 

by which the resin swells upon being placed in a solvent. However, the 

rate of diffusion of the substrate into the resin is also dependent upon 
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polarity gradients which develop between the bulk solvent and active 

sites within the resin. Therefore, by carefully choosing the degree of 

crosslinking in the resin (the more crosslinking the smaller the pore 

size), and the type of solvent system used, one is able to control the 

selectivity of the catalyst toward a particular reaction or substrate 

( 6 6 ) .  

In order to circumvent the problems of swelling of organic polymers 

as supports for transition metal catalysts, many workers have tried 

anchoring these complexes to inorganic supports such as silica, alumina, 

zeolites or derivatized silica and alumina due to their increased 

rigidity (66). Metal carbonyls such as Cr(CO)g (81) and Ru3(C0)i2 (82) 

have been supported on AI2O3 and SiOg, respectively, and shown to 

function as hydrogénation catalysts. In these types of catalysts, the 

adherence of the complex to the support is maintained by strong carbonyl-

surface interactions (81,82). 

Attachments of metal complexes can also be accomplished by placing 

ligands on the metal which contain functional groups which further react 

and bind to OH groups on the surface on the support. Recently, Wrighton 

and Liu (83) have shown that Ru3(C0)i2 supported on silica in two 

ways (Scheme 4). 

Wrighton has shown that these supported compounds can act as 

isomerization or hydrosilylation catalysts under the proper conditions. 

Capka and Hetflejs (84) have also succeeded in attaching groups as -PPh2, 

-SiCH2CH2PPh2 and -Si(CH3)2(CH2)3CN to inorganic materials such as y-alu-

mina, zeolites, and glass in order to prepare similar types of catalysts. 
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+ 3 (EtOjgSiCHgCHgPPhg 

i 
[(EtOjgSiCHgCHgPPhglgRUgfCOjg 

hv ./ -CO 

[(EtOjjSiCHgCHgPPhglRufCO)^ 

-Si. 

kSi 
[Si-OH], 

.Si.-0 --SiCHgCHgPPhgljRUgfCOjg + 9 EtOH 

LSi/° 

[Si-OH] 
0 V " 

_Si-0-SiCH2CH2PPh2]Ru(C0)^ + 3 EtOH 

[Si-OH]^ = silica gel 

kSi 

-Si = silica gel 
backbone 

hSi 

Scheme 4. Attachment of metal carbonyl compounds to derivatized 
silica gel (83) 

Based upon our knowledge of the NiL^/H* catalyst system we began a 

study to find ways to heterogenize these homogeneous catalysts. We were 

successful in designing a new type of polymeric complex, which also 

functions as an isomerization catalyst. The polymer produced was of the 

type: 

L L L 

_(p.p)_M-(P-P)-M-{P-P)-M-(P-P)- . 

I L L  
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where M is a metal atom which is connected to other atoms by P-P, a 

diphosphorus nonchelating ligand. This ligand was designed to mimic as 

closely as possible the electronic and steric properties of the ligands 

contained within the homogeneous catalyst. The synthesis and properties 

of these types of catalysts will be described in this thesis. 

We have also been able to heterogenize these NiL^ catalysts by 

supporting them on cation exchange resins. In our case, macroreticular 

resins were used to ensure diffusion of the NiL^ complex into the bead. 

The preparation, activities, and formulations of these catalysts will be 

discussed. 
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EXPERIMENTAL PROCEDURES 

Ail solvents were reagent grade or better. The following solvents 

were further purified by distillation from drying agents: diethyl ether 

(K metal); tetrahydrofuran, toluene and benzene (Na), methanol and 

pyridine (CaHg); acetonitrile (P4O20); acetone (molecular sieves). 

These chemicals were obtained from the following suppliers and were 

used as received: pentaerythritol, 2,2-dimethyl propanediol, 1,3-

butanediol, 1,1,1-trishydroxymethylethane, triphenyl phosphine, 1,3,5-

trihydroxy benzene, 1,2,4-butanetriol, diethyl aluminum chloride (1 M 

solution in hexane), and triethylaluminum were obtained from Aldrich 

Chemical Co. Nickel carbonyl, nickel tetraflouroboratehexahydrate, and 

the macroreticular resins were obtained from Alfa-Ventron, Inc. 1,4-

Dibromo-benzene and 4,4-dibromobiphenyl were obtained from Eastman 

Kodak. 3-Methyl-l-pentene-3-ol was obtained from Fluka A.G. Rhodium 

trichloride trihydrate was obtained from Engelhard Minerals. 

Proton NMR spectra were obtained on either a Varian EM-360 or a 

Perkin-Elmer/Hi tachi RB-20 NMR spectrometer. Me^Si was used as an 

internal standard in all cases. ^^P NMR spectra were obtained on samples 

contained in 10 mm tubes on either a Bruker HX-90 spectrometer operating 

at 36.4 MHz or a Bruker WM-300 spectrometer operating at 121.5 MHz. In 

both cases, the spectrometers operated in the FT mode with an internal 

lock provided by ^H atoms contained in the solvent. The external 

standard was 85% H3PO4 sealed in a 1 mm capillary tube held coaxially in 

the sample tube by a Teflon vortex plug. All downfield shifts of H3PO4 
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were considered positive. NMR spectra were obtained on a JEOL FX 90Q 

spectrometer operating at 22.5 MHz in the FT mode. An internal lock 

was provided by the atoms contained in the solvent. The carbon atoms 

of the solvent (CDCI3) acted as a reference. ^^Al NMR spectra were 

obtained on a Bruker WM-300 spectrometer operating in the FT mode at a 

frequency of 78.21 MHz. A sealed 1 mm diameter capillary tube containing 

a 1 M solution of AICI3 dissolved in D2O acted as both an external 

reference and an external ^H lock. NMR spectra were also obtained on 

a Bruker WM-300 NMR spectrometer operating at 96.3 MHz in the FT mode. 

An internal lock was maintained by the ^H atoms contained in the 

solvent. All spectra were referenced to EtgOiBFg. 

Mass spectra were obtained on a Finnegan 4000 or an AEl MS902 mass 

spectrometer. UV-visible spectra were obtained on a Perkin-Elmer 320 UV-

visible spectrometer. Quartz cells (1 cm x 1 cm x 10 cm) were used to 

obtain spectra of compounds contained in organic solvents. Fisher brand 

polystyrene (10 mm x 10 mm x 45 mm) cuvets were used to obtain spectra of 

compounds contained in aqueous solutions. Infrared spectra were obtained 

using a Perkin-Elmer 281 double beam infrared spectrometer. In all 

cases, the spectra were obtained on liquid solutions contained in matched 

NaCl solution in cells. 

Analysis of catalytic isomerization was performed on a Varian series 

1700 gas chromatograph equipped with a thermal conductivity detector. 

Separations were carried out on a 8' x 0.25" copper column packed with 

10% diisodecylphthalate on chromosorb P. The column and support were 

prepared by a previously described method (85,86). Analyses of mixtures 
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obtained in the catalytic hydrocyanation of 1,3-butadiene were carried 

out using a Varian model 3700 gas chromatograph equipped with a flame 

ionization detector, automatic peak integrator, and a glass capillary 

column containing SE-30 as a stationary phase. 

All preparations of NiL^ complexes were carried out under a nitrogen 

atmosphere. All manipulations involving these complexes were done using 

the appropriate Schlenk vessels or nitrogen-filled glove bags. 

Experiments on the catalytic isomerization of 3-butenenitrile were 

carried out using the following procedure. The NiL^ complex (0.10 mmole) 

was placed in a 25 ml nitrogen-flushed roundbottom flask, equipped with a 

stirring bar and rubber septum. The flask was then placed in a water 

bath maintained at Z5°C ± 0.2°C. Benzene (5.0 ml) was added via a 

syringe through the septum into the flask. The flask and its contents 

were equilibrated for 30 min. in the cooling bath and timing began after 

addition of 0.88 g (12 mmole) of 3-butenenitrile and 1 ml of a 1.0 M 

solution of F3CCO2H in benzene. Periodically, 0.5 ml samples were 

removed from the solution for GC analysis. Calculations of yields of 

isomerized products were carried out by cutting out and weighing the 

peaks in the chromatogram. The yields were calculated based upon 

response factors which were determined independently for 3-butenenitrile, 

cis-2-butenenitrile, and trans-2-butenenitrile. The presence of cis and 

trans 2-butenenitrile in the mixture was initially confirmed by 

preparative gas chromatography and subsequent proton NMR analysis. 

Catalytic hydrocyanations of olefins were carried out by the 

following procedure. HCN was prepared before each run by adding 
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approximately 10 mis of 18 M sulfuric acid to approximately 20 g of NaCN 

contained in a nitrogen-flushed 100 ml flask. The gaseous hydrogen 

cyanide produced was transferred via a cannula into a N2 filled 

centrifuge tube which was stoppered with a rubber septum. The tube was 

chilled to -78°C in order to facilitate the collection of the HCN. 

Attempts to hydrocyanate norbornene were then carried out using the 

method of Gultneh (38). Attempts to hydrocyanate 1,3-butadiene were 

carried out by the procedure of Drinkard and Lindsey (51). The NiL^ 

complex (0.07 mmole) was placed in a nitrogen-flushed 3-necked 25 ml 

flask which had been fitted with a rubber septum. Xylene (4.0 mis) was 

then added to the flask via a syringe. In some experiments, the flask 

would also be charged with ZnCl2 and excess ligand. The flask was then 

heated to 120° ± 0.5°C and allowed to equilibrate for 15 minutes. The 

1,3-butadiene was bubbled slowly (10 ml/1 min.) into the centrifuge tube 

containing the liquid HCN held at 0°. The HCN/l,3-butadiene gas mixture 

was transferred from the tube into the flask via a cannula which was held 

below the level of the NiL/^/xylene solution. Upon addition of the 

equivalent of 1 liquid ml of HCN over the course of 2 hrs., the 

experiment was ended and samples were removed for capillary gas 

chromatographic analysis. The yields of adiponitrile and other products 

from the reaction were obtained by integration of the peaks contained in 

the chromatogram. The existence of adiponitrile in the mixture was 

confirmed by comparison of the chromatogram to a chromatogram of pure 

adiponitrile recorded under the same conditions. 
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The purity of a particular ligand or phosphorochloridite was 

determined by its boiling point and NMR spectrum. The purity of a 

NiL^ compound was determined by its NMR spectrum exclusively. It was 

observed (38) that the different classes of compounds showed single peaks 

within a narrow range of chemical shifts (Table 5). In all cases, these 

compounds appeared as sharp singlets in the NMR spectrum. A 

particular compound was judged to be pure if it exhibited no other peaks 

in the ^^P NMR spectrum or if the area of the peak comprised 95% or 

greater of the total area of all peaks contained in the spectrum. 

Preparations 

KSeCN This compound was prepared via the procedure of Waitkins 

and Shutt (87). 

Ni(CH2=CHCN)2 This compound was first prepared by Schrauzer 

(88). However, the compound was prepared here by the following 

simplified procedure. Ni(00)4 (6.60 g, 38.6 mmole) and 60.0 ml of 

acrylonitrile was added to a nitrogen-flushed 250 ml 2-necked flask 

equipped with a condenser and nitrogen inlet. The mixture was refluxed 

under nitrogen for 2 hrs and then cooled to room temperature. The orange 

precipitate which formed was allowed to settle and the supernatant was 

removed via a cannula. The product was washed three times with 25 ml 

portions of dry, degassed ether and the resulting solid was dried under a 

stream of nitrogen gas. The material was used immediately without 

further purification. 
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Table 6. Ranges of chemical shift (rel. to H_PO,) for compounds 
discussed in this thesis. 

31 
Class of compound P NMR chemical shift range (ppm) 

. 0  

CI R „ 

R = Me or H in various combinations 

R 

^ D 

R = Me or H in various combinations 

R' = Me, Et, i-Pr, sec-Bu, t-Bu, or Ph 

160-180 

120-135 

NiL, 140-170 

L = Phosphite 
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2-Chloro-l,3,2-clioxaphosphorinane (1_) This compound was prepared 

via the method of Verkade and co-workers (89) with the following 

adjustment. Triethyl amine was not employed; instead, the HCl produced 

by the reaction of the diol and PCI3 was removed by passing a slow stream 

of nitrogen through the flask during the course of the reaction. The 

compound was obtained in 62% yield after distillation .(^4 = 47-50°, lit. 

bg = 36-38° (89); 31p ^MR (CgDg) 150.8, lit. 153.5 (89)). 

2-Chloro-5,5-dimethyl-l,3,2-dioxaphosphorinane (^) This compound 

was prepared in 59% yield from the reaction of 2,2-dimethyl-l,3,-

propanediol and PCI3 via the same procedure used to prepare _1 (b]^2 ~ 70°, 

lit. bi2 = 70° (89); NMR (CgOg) 146.1, lit. 146.0 (89)). 

2-B-Chloro-4-«-methyl-1,3,2-dioxaphosphorinane (2) This compound 

was prepared in 59% yield by the reaction of 1,3-butanediol and PCI3 by 

the procedure used for 2.. (b3 = 59°, lit. bq 5 = 30° (89); ^^P NMR (C5D5) 

150.8). 

2-g-Chioro-4,6-a,a-dimethyl-1,3,2-dioxaphosphorinane (^) This 

compound was prepared in 55% yield by the reaction of meso-2,4-

pentanediol and PCI3 using the procedure of J^. (bj3 = 72°, lit. = 71-

73°; 31p NMR (CgDg) 148.0). 

2-Methoxy-5,5-dimethyl-l,3,2-dioxaphosphorinane (^) This 

compound was prepared via the method of Gultneh (38). 

2-sec-Butyl-5,5-dimethy1-1,3,2-dioxaphosphorinane (^) This 

compound was prepared via the method of Gultneh (38). 
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2-3-Methoxy-4-a-methyl-l,3,2-dioxaphosphorinane (2_) This 

compound was prepared via the method of Gultneh (38). 

2-3-Methoxy-4,6-cx ,a-dimethyl-l,3,2-dioxaphosphorinane (^) This 

compound was prepared via the method of Gultneh (38). 

2-3-Phenoxy-4,6-a,a-dimethyl-l,3,2-dioxaphosphorinane (10) To a 

solution of 10.0 g (0.0595 mol) of ^ in 50 ml of dry ether at 0°C was 

added a solution of 5.61 g (.0597 mole) of phenol and 6.00 g (0.0594 

mole) tri ethyl amine in 25 ml of ether. The addition was carried out 

dropwise over a period of 0.5 hour. The mixture was stirred for an 

additional hour and then filtered. The ether was removed on a rotary 

evaporator. The product was distilled in 76% yield, (bg = 115-120°; 

NMR (CgDg) 119.2; NMR (CDCI3) 7.15m 5H CgHg, 4.65m 2H CH, 1.6m 2H CH2, 

1.2d (JH_H = 6 Hz) 6H CH3). 

4-Methyl-2,6,7-trioxa-l-phosphabicyclo[2.2.2]octane (11) This 

compound was prepared via the method of Verkade and co-workers (90). 

2.7.8-Trioxa-l-phosphabicyclo[3.2.1]octane (12) This compound 

was prepared via a literature method (91). 

2.8.9-Trioxa-l-phosphaadamantane (13) This compound was prepared 

via the method of Hutteman (92). 

2-Chloro-l,3,2-dioxaphospholane (14) This compound was prepared 

via a literature method (93). 

2-Isoproproxy-l,3,2-dioxaphospholane (15) This compound was 

prepared via a literature method (93). 
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2-R-l,3,2-dioxaphosphorinane (R = diethyl ami no (16), R = piperdino 

(17)) These compounds were prepared by reacting 0.10 moles of and 

0.20 moles of the corresponding amine in 100 ml of ether via a method 

similar to one described by Denney and Chang (94). Compounds 16 and 17 

were obtained in 65 and 81% yield, respectively, upon distillation (16: 

bi5 = 78-84°; ^Ip NMR (CgDg) 146.6; (U): = 90-95, 31p NMR (CgDg) 

141.3). 

2-a-R-4-a- methyl-1,3,2-phosphorinane (R = Diethyl amino (18), R = 

piperdino (19)) These compounds were prepared via the method of 

Denney and Chang (94). 

2-R-5,5-dimethyl-l,3,2-dioxaphosphorinane (R = dimethyl ami no (20) 

R = piperdino (21)) These compounds were prepared by reacting 0.1 

mole of ^ and 0.2 mole of the corresponding amine in 150 ml of ether at 

0°C. The amine hydrochloride was filtered and washed with ether. The 

ether was removed on a rotary evaporator and the resulting solid was 

sublimed. Compound ^ was sublimed at 27°/0.05 Torr resulting in a yield 

of 88%. Compound_21_ was sublimed at 60°/0.25 Torr resulting in a yield 

of 71% ((^: m = 28-29°, 31p nmR (CgDg) 144.0; (_H): m = 65°-67°, 31p 

NMR (CgDg) 142.3). 

Ni(P(0Me)3)4 This compound was prepared by a literature 

procedure (95). 

Ni(P(0Et)4)4 This compound was prepared via the method of Vinal 

and Reynolds (96). 
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Ni(P(0Ph)3)4 This compound was prepared by a literature 

procedure (97). 

NiL^fL = _5_, _7> i.» _!£» 1L> 2Ê.) These compounds were 

prepared via the procedure of Gultneh (38). 

Ni(13)4 To a suspension of 0.25 g (0.0015 mole) of Ni(CH2=CHCN)2 

in 10 ml of toluene was added 0.98 g (0.0061 mole) ofdissolved in 5 

ml of toluene. A white solid precipitated after 30 min of stirring. The 

solid was recrystallized from ethanol in 48% yield (m = decomp > 265°, 

NMR (CgDg) 153.0, lit. 153.0 (98)). 

Ni(18)4 To a suspension of 0.49 g (0.0029 mole) of Ni(CH2=CHCN)2 

was added 2.1 g (0.012 mole) of_1^ dissolved in 5 ml of toluene. The 

mixture was stirred for 1 hr. and the toluene was removed under vacuum to 

yield a yellowish-white solid. The solid was chromatographed on an 

alumina column to yield a white powdery solid in 42% yield (31p NMR 

(CgDg) 163.6). 

2-3-Phenoxy-4,6-a,a-dimethyl-2-a"Seleno-l,3,2-dioxaphosphorinane 

(22) Neat (2.00 g (0.00881 mole)) was added to a solution of 1.26 

g (0.00881 mole) of KSeCN dissolved in 25.0 ml of dry acetonitrile and 

the mixture was stirred for 2 hrs. The solution was filtered and the 

acetonitrile was removed on a rotary evaporator. A white solid was 

obtained in 94% yield (31p NMR (CDgCN) 57.4d 77^^ = 1024 Hz). 
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3,9-Dimethyl-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane 

(23) This compound was prepared by White (99). However, attempts 

to repeat this preparation were unsuccessful. Therefore, the following 

procedure was used. In a 50 ml flask equipped with a distillation 

apparatus was placed 6.8 g (0.051 mole) of C(CH20H)4 and 11.8 g (0.0952 

mole) of P(0Me)3. The flask was heated to lOCC and methanol slowly 

began to distill off. Heating was maintained for approximately five 

hours. At this point, not quite all the C(CH20H)4 had dissolved in the 

P(0Me)3. The mixture was placed under vacuum in order to remove any 

residual trimethyl phosphite and methanol. Sublimation of the crude 

material at 95°/2 mm yielded the product in 30% yield (m = 122-125°, lit. 

124-7° (99); ^Ip NMR (CgDg) 126.1). 

[Ni (23)(L' )g]p L' = P(0Me)3, _5, 7_ In 20 ml of dry acetonitrile 

contained in a nitrogen-flushed 50 ml flask was dissolved 0.0010 moles of 

the NiL'4 complex and 0.25 g (0.0010 mole) of ^ dissolved in 5 ml of 

acetonitrile was added to the flask via syringe. After 2 minutes of 

stirring, a thick gelatinous precipitate formed in the flask. The 

mixture was stirred for an additional 30 min., then filtered and 

repeatedly washed with fresh acetonitrile to remove any unreacted NiL'4, 

23, or L'. The white solid obtained was dried for several hours under 

vacuum. Attempts to dissolve this solid in various organic solvents 

proved to be unsuccessful. 

Reaction of [Ni (23)(P(0Me)-^)?]n and O3 A sample of 

[Ni(23)(P(0Me)T)9]p (0.090 g, 0.00016 mole) was placed in a 100 ml flask 
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fitted with a medium fritted filter stick. Fifty ml of CH2CI2 was added 

to the flask, which was then cooled to -78°C. Ozone produced from an 

ozone generator designed and built in the Chemistry Department at Iowa 

State University was bubbled through the flask for 2 hr resulting in the 

solution turning dark blue. The flask was warmed to room temperature and 

the blue color faded. The CH2CI2 was removed by distillation at 

atmospheric pressure. NMR analysis of the remaining oil showed only 

two peaks at 2.2 and -0.63 ppm in the ratio of 0.9 to 1. NMR spectra 

of authentic samples of (Me0)3P=0 and (Me0)2(0)P(0CH2)2C(CH20)2P{0)0Me 

exhibited single peaks at 2.2 and -6.3 ppm, respectively. 

Nickel analysis of [Ni(^)(P(0Me)3)2]n and [Ni(23)(7)?]n 

A sample of the polymer weighing 0.1800 g was placed in a 25 ml 

Erlenmeyer flask. A mixture consisting of 2 ml 70% HNO3 and 2 ml 72% 

HCIO4 was added to the flask. The mixture was then slowly heated in a 

silicon oil bath to 200°C, The solution was allowed to boil vigorously 

for 30 seconds and the flask was then removed from the oil bath and 

allowed to cool to approximately 130°C. To ensure that all of the 

polymer had been properly digested, the flask was again heated to 200°C 

for an additional 2.5 minutes. The resulting green solution was cooled 

to room temperature and a gravimetric nickel analysis was carried out as 

previously described by Skoog and West (100). Results of these analyses 

can be found in the results and discussion section of this chapter. 

meso-2,4-Dimethyl-1,5-dibromopentane This compound was prepared 

via the method of Noller and Pannell (101) (Scheme 5), which was amended 
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CHgCHfCOgEt)^ + Na"^OEt" > CHgCfCOgEt)^' 

meso + d,l 
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Scheme 5. The synthesis of meso-2.4-dimethv1-1.5-dibromo 
pentane 
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as follows. The reaction conditions for the preparation of meso-

a.a-dimethyl gluturic acid were not changed. However, the work up 

procedure used was the following. The resulting aqueous solution 

containing the glutaric acid was vacuum distilled to remove the water. 

The residual water was then removed by azeotropic distillation with 

benzene (30 ml benzene/10 g solid). When all the water had been removed, 

approximately 50% of the benzene was removed and a volume of heptane 

equal to half the volume of the remaining benzene was added. The 

resulting mixture was heated to redissolve any solid which had 

precipitated from solution. The product was obtained by cooling the 

solution at 5°C for 24-48 hr. The compound was obtained in 69.5% yield 

as opposed to the literature yield of 74% (101) (m = 98°-i04° lit. 101-

109° (101), NMR (CDCI3) 11.5s 2H COOH, 2.6-2.2m 2H CH, 1.9-1.6m 2H CH, 

1.2d (JH_H = 10 Hz) 6H CH3). For the meso-2,4-dimethyl-l,5-pentanediol 

the reaction conditions were not changed. However, the product was 

obtained in 83% yield (lit. 88.5%) (101) using the workup procedure of 

Fieser and Fieser (102) (B2 = 95-99°, lit. 97-99°; ^H NMR (CDCI3) 4.45d 

= 11 Hz 4H CH2O, 3.3s 2H OH, 1.9-1.5m 4H CH2 and CH, 1.95d 0%,% = 12 

Hz 6H CH3). 

Di chloroi sopropylphosphi ni te (24) This compound was prepared by 

the method of Gultneh (38). 

Bis-(2-methyl-jTj-propyl )i sopropyl phosphi ni te (25) In a 3-neck 

1000 ml flask equipped with a dropping funnel and mechanical stirrer was 

added 125 ml dry EtgiO and 3.2 g (0.13 mole) of Mg turnings. To the 
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solution was added 0.5 ml BrCH2CH2Br and the mixture was stirred for 15 

minutes. 2-Methyl-l-bromopropane (11.9 g, 0.0875 mole) in 50 ml of ether 

was added over a period of one hour. After the completion of the 

addition, the resulting solution was stirred for an additional 30 min. 

The reaction mixture was then cooled to -78°C. A solution of^ (7.0 g, 

0.043 mole) and pyridine (14.0 g, 0.167 mole) in 25 ml of dry ether was 

added drop-wise over 30 minutes. After stirring for an additional 30 

minutes, the mixture was warmed to room temperature and stirred for 1.5 

hours. After filtering in a nitrogen-filled glove bag, the ether was 

removed from the filtrate via distillation at 30 Torr. The product was 

obtained in 63% yield (31p NMR (CgDg) 122.0; NMR (CDCI3) 4.2-3.4m IH 

CH, 2.1-0.7m 24H CH3, CH, and CH3). 

2-Isopropyl-2-phosphorinane (26) This compound was prepared in-

the same manner asusing 20.0 g (0.0871 mole) of 1,5-dibromopentane, 

10.0 g (0.411 moles) Mg turnings, 14.1 g (0.090 moles) and 27.5 g 

(0.348 moles) of pyridine. A clear oil weighing 1.9 g was obtained. The 

NMR spectrum of the oil showed only two peaks at 108.7 and 126.0 ppm 

in the ratio of 20 to 1. Attempts to distill the product at reduced 

pressure (1 Torr) resulted in its decomposition. This was evidenced by 

the disappearance of the peaks at 108.7 and 126.0 ppm and the appearance 

of new peaks from +70 to 40 ppm. 

2-g-Isopropoxy-4,6-a,a-dimethyl-2-phosphorinane (27), 2-a-iso-

propyl-4,6-a,crdimethyl-2-phosphorinane (28) Attempts were made to 

prepare this compound from meso-2,4-dimethyl-1,5-dibromopentane and 24 



www.manaraa.com

71 

via the method of Gultneh (38) and the method used to prepare_2£. All 

attempts to prepare a pure sample of this compound were unsuccessful as 

evidenced by the existence of many peaks in the NMR spectrum of the 

brown oil obtained. Three sets of peaks in the regions of 220-205 ppm, 

111 to 106 ppm and 60 to 40 ppm showed that many different compounds 

formed in the reaction. Attempts to distill this material according to 

the conditions (56-58°/2 Torr) of Gultneh were unsuccessful. In fact, 

heating this mixture during the distillation resulted in the 

disappearance of the peaks located at 220 to 205 and 111 to 106 ppm with 

the subsequent appearance of new peaks in the region of 70 to 40 ppm. 

2-Tri phenyl methyl-2-oxophosphori nane (29) ' The oil (1.7 g) 

obtained in the synthesis of_^, 3.0 g (0.011 mol) of tri phenyl methyl 

chloride and 30 ml of dry degassed acetonitrile were refluxed for 5 hr. 

The acetonitrile was removed on a rotary evaporator and the resulting 

oily yellow solid was chromatographed on silica gel using a 3 to 1 

mixture of hexane and acetone. The yellowish oil which was obtained 

(0.46 g) showed only one spot on TLC (using hexane and acetone as 

solvents) (31p NMR (0030(0)003) 52.0; (CDCI3) 7.65-7.20m 15H CgHg, 

2.15-1.40m lOH CH2; v(P=0) (CHCI3) 1147 cm'l; P+ ^ = 360.1 meas., 360.1 

calc). 

2-a-Triphenyl methyl-2-g-oxo-4,6-a,a-2-phosphorinane (30), 

2-g-Tr i phenyl methyl-2-a-oxo-4,6-a, a-2-phosphori nane (31) In 30 ml of 

dry acetonitrile which contained 3.0 g (0.011 mole) of tri phenyl methyl 

chloride was dissolved 1.2 g of the brown oil containing 27 and 28. The 
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mixture was refluxed under N2 for 2 hours. A yellow solid was obtained 

upon removal under vacuum of the acetonitrile. The NMR spectrum of 

this material showed several peaks from +80 to +34 ppm, including 2 peaks 

at 56.0 ppm and 53.6 ppm In an approximately 4 to 1 ratio. 

Chromatography of this solid on a column of silica gel using a 9 to 1 

mixture of hexane and acetone yielded only a brownish oil. Large 

colorless crystals were observed in the oil after one week. The crystals 

which were extracted from the oil with cold acetone showed a single peak 

in the NMR at 53.2 ppm. The remaining oil showed a single resonance 

at 55.7 ppm ((30) ^Ip NMR (CDgCfOiCDg) 53.2 ppm; P+ | = 388.1 meas., 

388.7 calc; (31) ^Ip NMR (CDgC(0)003) 55.7 ppm; P+ | 388.1, meas. 388.7 

calc). 

X-ray experimental details for_30i A clear colorless crystal 0.2 

X 0.3 X 0.3 mm was sealed in a 0.3 mm Lindemann capillary tube and 

mounted on a Syntex P2 diffractometer equipped with a monochromator and 

Cu X-ray tube. Analysis of the crystal showed it to be orthorhombic with 

a = 16.554(7)A, b = 17.628(3)A, and c = 14.910(3)A ; v = 4351(8)A3, p = 

1.18 £ (calcd), N = 8. Data were collected using an w scan technique 
cm 3 

out to a 20 limit of 100.0°. A variable scan rate was used to collect 

data at a minimum rate of 4°/min and a maximum rate of 29°/min. A total 

of 3717 reflections were measured. Repeated measurement of a single 

strong reflection after every 75 reflections showed no evidence of 

crystal decay. Analysis of the data showed the systematic absences hOO, 

h = 2n; Okl, 1 = 2n; OkO, k = 2n; hOl, h = 2n; 001, 1 = 2n; hkO, k = 2n 
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indicative of the orthorhombic space group P^ab* Data averaging yield 

1473 reflections (Fg > 3a). The positions of all nonhydrogen atoms were 

found using MULTAN (103). The refinement proceeded without difficulty to 

yield a final R of 0.083. Hydrogen atom positions were then calculated 

and their positions were refined with no apparent improvement in the 

final agreement factor. A final difference map showed no unexplained 

electron density. 

X-ray experimental details for Ni (£)4 Ni{^)4 (0.3 g) was 

dissolved in a minimum (^1 ml) of boiling heptane contained in a 15 dram 

vial. The vial was placed in a small Dewar. The top of the Dewar was 

packed with a paper towel and then placed in a freezer which was 

maintained at -15°C. After cooling for 24 hours, the vial was removed 

from the dewar and large (3 x 3 x 3 mm average) crystals were observed on 

the bottom. The heptane supernatant was decanted off and the crystals 

were then allowed to air dry. The compound appeared to have no air 

sensitivity. 

Analysis of the crystals under a microscope showed that many of them 

were twinned. However, a small (0.3 x 0.3 x 0.3 mm) nontwinned fragment 

was cut off of a larger crystal and then mounted in a 0.3 mm Lindemann 

capillary. A data set was collected at room temperature using a four-

circle X-ray diffractometer designed and built in the Ames Laboratory. 

Data were obtained using graphite monochromated molybdenum radiation. 

The quality of the data set obtained at room temperature appeared poor 

owing to the fact that many of the reflections proved to be unobserved. 
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However, the data set was reduced and averaged. A11 nonhydrogen atom 

positions were found successfully using this data set. Refinement of the 

structure proceeded until it was noticed that the isotropic temperature 

factors for the exocyclic secbutyl carbons were found to be equal to 

about 29.0. This indicated that there was excess thermal motion in the 

molecule. 

The refinement was suspended and a new data set was collected at 

-95°C ± 2°C. The crystal was found to be monoclinic with a = 

13.873(1) A, b = 17.195(1) A, c = 20.351(3) A, 0 = 101.97(1)% z = 4, v = 

4748.8(7) A3 and p = 1.23 9/cm^ (calcd). The only systematic absence, 

hOl, 1 = 2 n, indicated the space group which was later confirmed by 

solution of the structure. Data collection yielded 3879 reflections 

measured over 3 octants with a 20 limit of 50°. There was no observed 

decomposition of the crystal based upon repeated observation of three 

standard reflections. Averaging of equivalent data yielded 1987 

independent reflections (Fq > 3a). Block matrix least squares isotropic 

refinement of the nonhydrogen positions yielded a conventional R of 0.135 

and a weighted R of 0.149. A full matrix anisotropic refinment of the 

nonhydrogen atoms led to a final conventional R of 0.086 and a weighted R 

of 0.108. An electron difference map of the unit cell failed to show any 

unexplained electron density. 

1,4-Bis(diphenylphosphino)benzene (32) This compound was 

prepared by the procedure of Baldwin and Chang (104). 
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1,4-Bis(cliphenylphosphinito)benzene (33) Hydroquinone (4.0 g, 

0.036 mole) and 11.0 g (0.109 mole) triethyl amine were dissolved in 100 

ml of dry ether. The solution was cooled to 0°C and 16.0 g (0.072 mole) 

diphenylchlorophosphine in 100 ml of dry ether was added dropwise over 30 

min. The solution was stirred with the aid of a mechanical stirrer for a 

period of 1 hr. The mixture was filtered and the ether was removed on a 

rotary evaporator. The yellow oil obtained was dissolved in boiling n-

propanol and long slender crystals formed upon cooling. The product was 

obtained in 11.1% yield (m = 130-131°; ^Ip nmr (CgDg) 112.4; NMR 

(CDCI3) 7.4m 20H CgHg, 6.95m 4H C5H4). 

4,4'-(Diphenylphosphino)biphenyl (34) A solution of 8.6 g (0.028 

mole) of 4,4'-dibromobiphenyl in 35 ml of dry THF was placed in a 3-neck 

250 ml flask equipped with a nitrogen inlet, dropping funnel and 

mechanical stirrer. The solution was chilled to -78°C and 30 ml (0.066 

mole) of 2.2 M solution of n-butyl lithium in hexane was added dropwise 

over one hour. Upon completion of the addition, 12.3 g (0.056 mole) of 

diphenylchlorophosphine was added to the reaction mixture over 10 min.. 

The solution was stirred for an additional thirty minutes and then 

filtered. The solid which was obtained was washed with water and then 

refluxed overnight in methanol to remove any remaining unreacted 4,4'-

dibromobiphenyl. The remaining solid was filtered and dried under vacuum 

for several hours. The product was obtained in 15.3% yield (m = 189-

190°, lit. = 192-194° (105); NMR (CgDg) -6.0; (CDCI3) 7.50m CgHg, 

C6H4). 



www.manaraa.com

76 

Rh(P(C6Hg)2)2Cl(35) This compound was prepared using the 

procedure of Osborn and Wilkinson (106). 

Reaction of ^ and ^ In order to obtain polymers similar to 

those obtained with NiL^ complexes, 0.23 g (0.00025 mole) of and 0.12 

g (0.00026 mole) of ^ were mixed in 20 ml of methylene chloride. The 

mixture was stirred overnight with no evidence of any polymer 

formation. Further refluxing of this material for 24 hrs. also failed to 

produce any polymeric material. 

Reaction of _34 and_35_ In 20 ml of methylene chloride was mixed 

35 (0.16 g, 0.00017 mole) and(0.088 g, 0.00017 mole). After 32 hrs. 

of stirring at room temperature and 16 hrs. of refluxing, no polymeric 

material was observed to have formed. 

Reaction of_33 and_35 In 20 ml of chloroform was mixed_35 (0.31 

g, 0.00033 mol) and(0.17 g, 0.00033 mole). The mixture was refluxed 

for 30 min. After stirring overnight, a dark red precipitate was 

observed to have formed. The solid (0.1 g) was filtered and dried in 

vacuum. Attempts to dissolve this material in any organic solvents were 

unsuccessful. Attempts were made to use this material as a catalyst for 

the hydrogénation of 1-hexene according to the procedure of Gultneh (38); 

however, the compound proved to be catalytically inactive. 

l-chloro-3-methyl-2-pentene Attempts to prepare this material by 

the procedure of Gultneh (38) failed. The following amended procedure 

was used. To a mixture of 32.5 g (0.276 mole) of 3-methyl-pentene-3-ol 
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and 28.8 g (0.343 mole) of pyridine in 125 ml of ether was added 

dropwise, 43.6 g (0.366 mole) of freshly distilled thionyl chloride, over 

the course of 30 min. at room temperature. The mixture was stirred for 

an additional 2 hours and then filtered. The ether was removed and the 

residual yellow liquid was vacuum distilled to give the product in 36.7% 

yield (b^gQ = 85°; (CDCI3) 6.2-4.8m IH CH, 3.9d J^.H = 12 IH CH2CI, 

2.3-1.8m 2H CH2, 1.65s 3H CH3, 0.85t J^.H = 10 Hz 3H CH3). 

3-methyl-3-hexenenitri1e A solution of 6.0 g (0.051 mole) of 1-

chloro-3-methyl-2-pentene, 4.0 g (0.083 mole) of NaCN, and 0.3 g (0.003 

mole) of KI in 125 ml of acetone was refluxed for 16 hrs. The mixture 

was cooled to room temperature and filtered. The acetone was removed and 

the remaining liquid was vacuum distilled to give the product in 27.0% 

yield (B12 = 35-38°; v(C=N) = 2255 cm"^; NMR (CDCI3) 5.5-5.Cm IH CH, 

3.Id JH_H = 12 Hz 2H CH2CN, 2.3-1.9m 2H CH2, 1.7s 3H CH3, l. ldt 6H CH3). 

Supported NiL^ complexes on macroreticular resins The resin 

(0.53 g, 0.0016 mole of H+), 3.5 g (0.0048 mole) of Ni(P(0Et)3)4 and 10 

ml of dry, degassed toluene were placed in a nitrogen-flushed 50 ml round 

bottom flask equipped with a stirring bar. The mixture was stirred for 

12 hr. under nitrogen at room temperature. The toluene was then removed 

and the resin was washed with four 15 ml aliquots of fresh toluene. The 

beads were then immediately used as catalysts. Resins containing 

different NiL^ complexes were prepared in an analogous manner using the 

same ratios of reagents. 
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Analysis of NiL/|.-supported macroreticular resins The resins were 

digested with HNO3/HCIO4 mixtures using the same procedure used in the 

nickel analysis of the [Ni(ESjpL']» complexes. The resulting acid 

solutions were analyzed quantitatively for nickel using the previously 

described procedure of Snell (107). 

Results and discussion 

The catalytic properties of a NiL^ complex are due in large measure 

to the ability of the complex to dissociate. Dissociation of a ligand 

provides an open site which is available for coordination of small 

molecules such as olefins. Ordinarily, only NiL^ complexes which contain 

bulky ligands, as defined by their ligand cone angles, are extensively 

dissociated in solution. Examples of these types of ligands are P(0-2_-

Pr)3 and P(0-^-tolyl)3. In fact, nickel(0) complexes of these ligands 

have been shown to dissociate extensively in solution to NiLg complexes 

(108). However, for complexes with smaller ligands, dissociation does 

not occur until the complex is protonated in solution. As stated 

previously in the introduction, dissociation of a ligand upon protonation 

is probably facilitated by reduced n-back donation of electron density 

from the nickel atom to the phosphorus atom. The reduction in n-back 

donation is caused by the electrophilicity of the proton upon 

coordination. The decrease in back donation reduces the strength of the 

Ni-P bond which promotes dissociation. Though Tolman contends that 

dissociation in complexes containing ligands with small ligand cone 

angles is aided by protonation of the complex, he maintains that the 
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steric properties of the ligand determine the extent to which these 

complexes dissociate. 

Gultneh has used steric arguments to explain why adding methyl 

groups to the equatorial 4,6 positions of the phosphorinane ring causes 

the NiL^ complexes of these ligands to be more efficient catalysts. 

Gultneh has also observed that large groups in the exocyclic positions on 

phosphorus also brought about an increase in the catalytic activity of 

the complex. This effect is maximized by having an isopropyl group in 

this position. Groups larger than isopropyl tend to cause a decrease in 

the catalytic activity of the complex. Gultneh erroneously contends that 

the main cause for the decrease in activity of NiL^ complexes containing 

ligands which have these larger groups is the increased basicity of the 

phosphorus atom. This increase in phosphorus basicity was thought to be 

due to either increased amounts of electron donation to phosphorus by the 

alkyl groups, or, by the steric interactions within the complex which 

cause the larger exocyclic groups to adopt the more basic equatorial 

position. However, on the basis of data given in his thesis, the 

change in relative phosphorus basicity of the ligands would appear to be 

slight (Table 7). Moreover, an X-ray structural analysis of Ni{^)4 

(given later in this thesis) indicates that large exocyclic groups are 

not forced to adopt an equatorial position at least in the solid state. 

The reduction in activity is probably due to the larger steric bulk of 

these groups which impedes the ability of an olefin to coordinate to the 

nickel atom. 
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Table 7: NMR chemical'shift and Jp_u values of some selected 
monocyclic phosphite ligands upon protonation with psOnH at 
-50°C (38) , 

L 5 31p(HL+) ppm (± 4 Hz) 

OR 

R = Me 18.0 861 

l-Pr 16.5 852 

J_-methyl 16.9 853 

_l_-bornyl 16.2 856 

0 

0 
I 
OR 

R = Me 17.5 871 

j_-Pr 16.8 855 

2_-menthyl 16.9 865 

J_-bornyl 17.2 854 
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Table 7. (continued) 

L 5 31p(HL+) ppm Jp_H (±4 Hz) 

OR 

R = Me 16.5 861 

= j_-Pr 16.8 853 

= J_-menthyl 16.9 853 

= bornyl 16.6 854 

43.7 913* 

OHe 

21.4 899^ 

^Reference (109), 

^Reference (110), 
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Tolman (19) has suggested that the steric properties of a ligand are 

the major factors in determining the extent to which it dissociates from 

the complex. However, in order to see if the electronic properties of 

the ligand had any role in shaping the catalytic properties of a complex, 

several new ligands and their NiL^ complexes were prepared and tested as 

isomerization catalysts. Ni(10)/L was shown to be completely inactive as 

a catalyst. Gas chromatographic analysis showed that the complex failed 

to isomerize 3-butenenitrile to ci s and trans-2-butenenitrile. This 

seemed unreasonable in view of the high activity of Ni(2)4. Models of 

Ni(10)4 seem to show that the phenoxy groups have almost the same steric 

properties as an isopropyl group. This is also illustrated by the 

similarity in the ligand cone angles of P(0-^-Pr)3 and P(0Ph)3 of 130° 

and 128°, respectively. In order to determine the relative basicity of 

this ligand, its corresponding selenide was prepared and its ^^Slp-jy^g 

value was measured (19). This value was found to be 1024 Hz. As can be 

seen in Table 8 this coupling constant is much higher relative to the 

coupling constant of the selenide of ^ (compound ^ was shown by Jp_^ data 

to be electronically similar to 2). In fact, 1igand would seem to 

have electronic properties much closer to the constrained phosphites, 

P(0CH2)3C(Me), 0CH2CH20P(0Me) and P(OCH2)2C0(Me). The reduced basicity 

of 10, which seems similar to that of the 5 member ring phosphite 37, 

probably is due to resonance delocalization of electron density from the 

oxygen to the phenyl ring as shown in fig. 4. The build up of positive 

charge on oxygen brings about a build up of positive charge on 
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Table 8. ^^P-^^Se spin-spin couplings and ^^P NMR chemical shifts 
(rel. to HgPOg) of some selected selenophosphoryl 

compounds(13) 

Compound 6 
(±0.1.ppm) 

31p-77se 
(± 1 Hz) 

SeP(OMe). 78.0 954 

OMe 

"̂ 0 V C o 
Se 

66.8  

68.8 

996 

949 

OPh 

I 
OMe 

57.4 

88.0 

60.1  

61.4 

1024 

1011 

1053 

1099 
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Fig. 4. Resonance structures for a phenoxy group. 

phosphorus thus reducing its basicity and decreasing the extent to which 

the NiL^ complex is protonated. This is evidenced by the failure of a 

solution of Ni(10)/i to turn yellow upon addition of acid. Such a failure 

of the solution to turn yellow has been shown in the past (38) to stem 

from the lack of protonation of the NiL^ complex. 

This reduced basicity argument has been used to explain why NiL^ 

complexes containing 5-member ring phosphite ligands such as ^ also fail 

to act as catalysts for olefin isomerization (38). Structural studies of 

these types of ligands have shown their P-O-C angles to be constrained, 

thus causing a decrease in their phosphorus basicity as discussed 

previously (111). This reduction in ba,s1city and hence the basicity of 

the nickel is observed by the low degree (5% by NMR) to which Ni(37)^ 

protonates in acidic solution. This decrease in the extent of 

protonation is also demonstrated by the failure of solutions of Ni(37)4 

to turn yellow in color upon addition of acid. The effect of decreased 

phosphorus basicity by molecular constraint on 5-member ring phosphites 
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is so great that it can not be overcome by large electron donating groups 

in the phosphorus exocyclic position. This was exemplified by the 

preparation of Ni(15)^, which contains an isopropyl group in the 

exocyclic position, and its observed inactivity as an isomerization 

catalyst. NMR analysis showed that the complex failed to protonate 

in solution. 

In order to investigate the effect of increased phosphorus ligand 

basicity on the catalytic activity of complexes, several ligands were 

prepared which contained amine functions in the exocyclic position. The 

increase in phosphorus basicity by replacing the alkoxy group with an 

amino group is best illustrated by the decrease in of 

Se=P(0Me)3 compared to Se=P(NMe2)3 from 954 to 784 Hz (19). In order to 

test this effect, the series of aminophosphite ligands, 16, 17, 18, 19, 

^and ̂  were prepared along with their corresponding series of NiL^ 

complexes. In every case, all of these complexes were shown to be 

totally inactive as isomerization catalysts. Attempts were made to 

measure the Jp_^ values of the protonated forms of these ligands using 

^^P NMR in order to estimate their relative basicity. However, in all 

cases, upon adding FSO2H to the NMR tube containing the ligand according 

to the procedure of Weiss and co-workers (111), a darkening of the 

solution was observed. Subsequent ^^P NMR analysis indicated that the 

ligand had undergone extensive decomposition upon mixing with the acid. 

In an attempt to determine how this decomposition of the ligand 

might have been responsible for the inactivity of the complexes, a low-

temperature ^^P NMR analysis of the protonation of one of these complexes 
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was carried out. Fig. 5 is an example of what is observed in the NMR 

when a nickel complex of a phosphite, is protonated in a 5 to 1 14+ to 

Ni ratio. As can be seen upon addition of acid, the singlet at 154.6 ppm 

corresponding to the NiL^ complex shrinks with subsequent formation of a 

doublet at 136.8 ppm (Jp_n = 33 Hz), indicative of protonation. In the 

case of Ni(20)/L (6 ^^P = 163.8 ppm), addition of even one equivalent of 

acid brings about apparent decomposition of the NiL^ complex as evidenced 

by formation of new peaks in the ^^P NMR spectrum at 172, 169, 165, 145, 

140, 133 and 116 ppm (Fig. 6). Upon addition of another equivalent of 

acid (Fig. 7), even more decomposition is observed. At a ratio of 10 

acid to 1 Ni (the ratio which was shown to give an optimum rate of 

catalysis for phosphite complexes (38)), the ^^P NMR spectrum seems to 

suggest that all of the NiL^ complex has decomposed (Fig. 8). However, 

there appears to be a small doublet centered at 127.5 ppm which shows a 

coupling constant of 32 Hz, suggestive of a protonated NiL^ complex. 

Integration of this doublet shows that it comprises only about 4% of the 

total area of all the peaks in the spectra, however. 

On the basis of these experiments, the inactivity of these complexes 

as catalyst can be explained by their decomposition in acid solution. It 

is possible that instead of the nickel being protonated, as occurs with 

phosphite complexes, the nitrogen of the ligand is preferentially 

protonated. The protonation of the nitrogen facilitates weakening of the 

P-N bond thus leading to decomposition of the ligand and subsequently the 

NiL^ complex. 
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Figure 5. NMR spectrum of a CgDg solution of Niacidified 
with 5 equivalents of F^CCOOH at room temperature 
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Figure 6. P NMR spectrum of a CgDg solution of Ni(20)^ acidified 

with 1 equivalent of F^CCOOH at 200 K 
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with 2 equivalents of F^CCOOH at 200 K 
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Figure 8. NMR spectrum of a CgDg solution of Niacidified with 

10 equivalents of F̂ CCOOH at 200 K 
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On the basis of these results, it would appear that the electronic 

properties of the ligand are very important in determining the extent to 

which an NiL^ complex is protonated in solution. However, it also seems 

that as long as the nickel atom is able to undergo protonation, the 

steric properties of the ligand influence the catalytic activity of the 

complex in two ways: firstly, by promoting dissociation of a ligand, and 

secondly, as will be seen in the work with asymmetric catalysis, by 

influencing the extent of olefin coordination to the metal atom. 

Use of Lewis acid cocatalysts in the isomerization of 3-butenenitrile 

, Gultneh observed that Lewis acids such as AICI3, TiClg, and ZnCl2 

acted as efficient cocatalysts in the isomerization of olefins. It was 

observed that in most cases the rates of catalysis using these compounds 

were similar to that observed with protic acids (Table 9). 

It was found that benzene solutions containing catalytically active 

mixtures of NiL^ complexes and Lewis acids were yellow in color, as was 

observed in protic acid solutions. In fact, the visible spectra of these 

solutions exhibited absorption maxima in the region of 355 nm as was also 

observed with H^/NiLg systems (38). Moreover, addition of P(0Me)3 to 

solutions containing a NiL^ complex, (L = 2-alkoxy-l,3,2-

dioxaphosphorinane) and a Lewis acid such as AICI3 brought about 

redistribution of the ligands to form complexes of the type 

NiLj^(P(0Me)3)4_x (38). This was confirmed by NMR analysis (38). 

Based upon the similarities between the Lewis and protic acid 

systems, Gultneh contended that the role of Lewis acid in the catalysis 
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Table 9. Comparison of activity of Lewis acids to as cocatalyst in 
the isomerization of 3-butenenitrile 

Ligand Lewis acid 

cycles in 30 min (+2) 

AICI3 ZnCl2 H+ 

2 54 15 25 

]_ 88 20 60 

8_ 124 (4.0 min) 30 124 (4.0 min) 

^CLewis acid]/[NiL/^]/3-butenenitrile = 1/1/124. 

^Time (± 0.2 min) taken to complete 124 cycles. 

CRef. (38). 

was similar to H"*". His proposal of a NiL/^iAlClg adduct was based upon 

the visible absorbance which was previously mentioned. However, at the 

time, the exact bonding interaction between the nickel and aluminum was 

not understood. Based upon the presence of a molar conductivity of 15.4 

ohm'l cm^ mole"^ in CH3CN for a 1 to 1 mixture of Ni(2)4 and AICI3, the 

following mechanism was proposed for the interaction of a NIL4 complex 

NiL* + AICI3 4. L^NiAlCls > L4NiAlCl2"^ CI" 4. L3NiAlCl2" CI" + L 

Scheme 6. Proposed mechanism of Gultneh for the interaction of 
a NiL4 complex and •AICI3 
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with AlClg. It was also reported that addition of excess ligand to these 

catalyst mixtures decreased the rate of catalysis. 

The conductivity reported was extremely low for what would have been 

expected for a 1 to 1 electrolyte in CH3CN (120-160 ohm"^ cm^^ mole"^) 

(112). A recheck of the conductivity of Ni (2)4/^1013 under nitrogen 

using freshly sublimed AICI3 and CH3CN freshly dried from P^OiQ, showed 

that the system had no detectable conductivity. It is possible that the 

previously described value was caused from the partial hydrolysis of 

AICI3 by water contained within the system (Eq.34 ). 

AICI3 + H2O 4. Al(0H)Cl2  + H+ + CI- (34) 

Since attempts by Gultneh (38) to isolate these adducts had failed, 

we sought to find a new way of proving or disproving their existence. A 

UV-visible spectroscopic study was carried out in order to achieve this 

goal and the following observations were made: 

1. Addition of Ni (2)4 in benzene showed no absorption in the visible 

spectrum. Likewise, 2 showed no visible adsorption. 

2. Addition of Ni (2)4 to CH2CI2 caused the solution to turn slightly 

yellow in color. A slight absorption (e = 2.7 x 10^) at 340 nm was 

seen in the visible spectrum. 

3. A 1 to 1 molar mixture of Ni(2)4 and AICI3 in CH2CI2 shows 

absorptions at 420 nm (e = 9.6 x 10"^) and 340 nm (e = 2.3 x 10^). 
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4.  Addition of excess ligand to the mixture described in 3 causes an 

increase in the size of the peak at 420 (e = 1.1 x 10^) and a 

decrease in the size of the peak at 340 (e  = 9 .0) .  

5. The visible spectrum of AICI3 and free ligand 2. in CH2CI2 showed an 

absorption at 420 nm (e = 6.0). 

The data would seem to suggest that the peak at 340 nm is from a 

NiLg species while the peak at 420 nm is from an adduct which forms 

between the AICI3 and the free ligand. 

Tolman and Gosser (108) have previously shown that NiLg species such 

as Ni(P(0-^-tolyl)3)3'exhibits an absorption maximum at 420 nms, while a 

solution of Ni (P(0-2_-Pr)3)4 exhibits an absorption maximum at 430 nm upon 

heating, indicative of the formation of Ni(P(0-_i_-Pr)3)3. The reasons for 

the lower wavelength absorption at 340 nm of Ni (2)4 (in CH2CI2) as 

compared to the 410 nm absorption of Ni (P(0-j_-Pr)3)3 are not known as 

yet. It is perhaps caused by a difference in the value of 10 Dq, 

resulting from the difference in the ligand basicity and steric 

arrangement in the resulting Ni(2)3 complex. The above results suggest 

that the role of AICI3 in this system is that of a dissociation promoter 

(Eq. 35). 

NiL4 + AICI3 > NiL3 + L:A1C13 (35) 

The AICI3 in this case assists in shifting the equilibrium toward the 

coordinatively unsaturated NiLg species which can then isomerize 3-

butenenitrile through a w-allylic mechanism. In order to further 

substantiate these ideas, an ^^Al NMR study was carried out in order to 
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determine what changes, if any, take place around the aluminum atom when 

the AICI3 is added to the NiL^ complex. 

Aluminum has been found to be a very good NMR nucleus (113). 

Reasons for this are: the aluminum-27 isotope is 100% abundant and the 

relative receptivity of the nucleus to the NMR experiment is 20% that of 

hydrogen (phosphorus having a receptivity of only 6.6% relative to that 

of hydrogen). Although the aluminum-27 nucleus possesses a quadrupole 

moment with a spin of 5/2, it is still possible to obtain spectra which 

contain very narrow lines. However, this is observed only when there is 

a high degree of symmetry around the aluminum atom. Thus, the highly 

symmetric /^(HgiO)^*^ ion has been shown to have a line width of only 3 Hz 

(114). 

Aluminum-27 NMR chemical shifts (relative to A1 (1^20)5'*'^) have been 

shown to be dependent upon the type of coordination around the aluminum 

atom (113). Complexes which possess octahedral symmetry are usually 

found to exhibit chemical shifts in the region of +20 ppm to -50 ppm. 

While tetrahedrally coordinated compounds are found to have chemical 

shifts from -28 to +221 ppm. Therefore, upon obtaining both line width 

and chemical shift data, it is found that aluminum-27 NMR provides an 

extremely useful tool in determining the chemical environment around an 

aluminum atom. 

The existence of stable adducts between phosphorus bases and 

aluminum containing Lewis acids has been known for some time. Vriezen 

and Jellinek (115) have shown that AIX3, (X = CI or Br) can form stable 

adducts with trialkylphosphines. They found that the following 
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equilibrium (Eq. 36) is maintained in solutions containing these 

compounds. 

R3P 

R3P + AlXg^^RgPAlX^ ^ ^(R3P)2A1X3 (36) 

R = Me or Et X = Cl or Br 

It was observed that the relative concentrations of the mono and 

diphosphorus adducts could be controlled by adjustment of the ratio of 

PR3 to AlXg in solution. Titration of the AICI3 with PEtg in toluene 

showed that the ^^Al resonance varied from +109.9 ppm (rel. to 

Al(H20)g+3) for a 1 to 1 adduct, to.a limiting value of 55.9 ppm for 

(R3P)2AlCl3, The rather large difference in chemical shift (54 ppm) was 

attributed to the change from sp^ hybridization in Et3PAlCl3 to dsp^ 

hybridization in (Et3P)2AlCl3 (115). 

As can be seen in Table the ^^Al chemical shifts for the 

aluminum species produced from a 1 to 1 mixture of AICI3 and free ligand 

(P(0Et)3 or _9), is about 103.7 ppm. The peak falls in the same region as 

is observed for a 1 to 1 AlCl3/PEt3 adduct. It should also be noticed 

that the same chemical shift is observed for a 1 to 1 mixture of AICI3 

and the corresponding NiL^ complex. It would be highly coincidental if 

the chemical shift of an adduct formed between the AICI3 and the nickel 

atom, as proposed by Gultneh, came at the same place as the shift of an 

AlCl3/phosphite adduct. Therefore, on the basis of this evidence we are 

fairly confident that the role of a Lewis acid, in particular AICI3, is 

to promote ligand dissociation, as shown in equation 33. As further 
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Table 10. ^^Al NMR data for various AICI3,  ligand, and NiL^ complex 
mixtures^ 

27 components in mixture ratio of components 6 Al Line width 
(ppm) (Hz) 

A1C13 91.0 300 

AlCl3/P(0Et)3 1/1 103.5 50 

AlCl3/Ni(P(0Et)3)4 1/1 103.9 50 

AlCl3/(9) 1/1 103.6 132C 

AlCl3/Ni(_9)4 • 1/1 103.9 10^ 

^Rel. to AlfDgOjg+S. 

^In toluene solution. 

^The reason for the large difference in the line width between the 
spectra of the NiL^ complex and the ligand is not known as yet. 

evidence for this mechanism, the same type of study was done with the 

AlCli/Ni(ll)a system. A 1 to 1 mixture of AICI3 and n_exhibits a ^^Al 

NMR shift of 104.0 ppm. However, a 1 to 1 mixture of AICI3 and Ni(11)d 

shows only a peak at +91.0 ppm indicative of AICI3 dissolved in 

solution. It would appear that in this case an adduct fails to form 

between (JJJ and AICI3. This can be explained by the lack of 

dissociation of a ligand from the Ni(11)/L complex due to the high 

strength of the Ni-P bond. 

Attempts to observe the chemical shift of an adduct formed between 

AICI3 and were also unsuccessful. It appears that is not 

sufficiently basic enough to form an adduct with aluminum. In fact, the 

jp_H value of H(12)+ (929 Hz) indicates that it is even less basic than 

n (H(ll)+, Jp_H = 899 Hz (109)). 
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For the AlClg/phosphite adduct, there exists the possibility of two 

different modes of coordination of the phosphite to AICI3. Coordination 

can take place through either the lone pair on phosphorus or through one 

of the lone pairs on oxygen. Cohen and Smith (116) have shown that 

coordination occurs exclusively through the Tone pair on phosphorus, 

however. This was illustrated by a NMR study of the adduct formed 

between P(0Me)3 and AlMe^. The NMR resonance for the methoxy protons 

appeared as a single doublet. This suggests that either all the methoxy 

groups were equivalent due to phosphorus coordination to aluminum or the 

aluminum was rapidly exchanging coordination with all the oxygens of the 

phosphite. However, IR studies showed very little change in the P-O-C 

stretching frequencies upon coordination of the aluminum. Therefore, 

Cohen and Smith suggested that coordination takes place exclusively 

through the phosphorus atom. 

This mode of coordination was also found to be consistent with ^^C 

NMR data taken on a 1 to 1 mixture of PfOEt)^ and AICI3. The ^^C NMR 

spectrum of P{0Et)3 in C5D5 shows two doublets at 57.67 (J^-p = 13.5 Hz) 

and 16.85 (J^.p = 6 Hz) ppm. Upon addition of one equivalent of AICI3, 

there appears to be no change in any of chemical shifts, nor in the 

values of JQ_P-

It was observed that a major limitation in working with AICI3 was 

its low solubility in aromatic solvents, namely, 0.7% by weight in 

toluene (117). In order to investigate the effect of higher 

concentrations of Lewis acid on the rate of catalysis, AlEt3 was tried as 

a cocatalyst due to its much higher solubility in solvents such as 
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benzene. Catalytic isomerization of 3-butenenitn'le involving 

Ni(P{0Et)3)4/AlEt3, in a 1 to 1 ratio, showed the system to be completely 

inactive. Higher A1 to Ni ratios were also shown to be inactive as 

catalyst systems. In ratios higher than 3 to 1, it appeared that the 

AlEtg led to decomposition of the Ni(P(0Et)3)4 complex as evidenced by 

NMR spectroscopy. 

Attempts to use Mi (2)4/^!Et3 in a 1 to 1 ratio as cocatalysts were 

also unsuccessful as shown by the lack of any isomerized product produced 

in 24 hrs. However, using a 10 to 1 ratio of AlEt3 to Ni(2)4, 116 cycles 

were observed in 24 hrs for the isomerization of 3-butenenitrile 

(cis/trans = 1.2), This decrease in activity as compared to AICI3 is 

probably due to reduced electrophilicity of aluminum by the electron 

donating ethyl groups. This effect is thought to interfere with the 

extent to which adducts form between the AlEt3 and the dissociated 

1igand. 

In order to achieve a compromise between increased solubility and 

electrophilicity, AlEtCl2 was tried as a cocatalyst. ^^Al NMR data for 

the Ni(9_)4/AlEtCl2 system is shown in Table 11. The large downfield 

shift of 130.7 ppm for AlEtClg as compared to 91.0 ppm for AICI3 and 87.1 

for neat Al{j_-Bu)Cl2 (118) is presently unexplained. This large 

downfield shift may be attributed to concentration or solvent effects. 

However, addition of 1 equivalent of free 1igand (2) to AlEtCl2 causes 

the resonance to shift upfield to 103,8 ppm. A 1 to 1 molar ratio of 
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Table 11. Z^Al NMR data 
mixtures^ 

for various AlCl2Et, ligand, and NiL^ complex 

Mixture Ratio of components 6 ^^Al (p.pm) 

AlCl2Et --- 130.7 ppm 

AlCl2Et/2 1/1 103.8 ppm 

AlClgEt/ Ni (2)4 1/1 104.0 ppm 

^Relative of Al (D20)6"*"^» 

Ni(2)4 and AlEtCl2 also shows a single resonance in about the same 

position (104.0 ppm). Attempts to use AlEtCl2 as a cocatalyst were 

successful only when the Ni (2)4 and AlEtCl2 were present in a 1 to 1 

molar ratio. This ratio of AlEtCl2 proved to be a much better cocatalyst 

than AlEtg as illustrated by the 115 cycles achieved in 1.75 hrs. for the 

isomerization of 3-butenenitrile. Attempts were made to carry out the 

isomerization at higher ratios of A1 to Ni such as 5 to 1 and 10 to 1. 

However, these attempts proved to be unsuccessful and NMR studies 

revealed the decomposition of the NiL^ complex at these higher 

concentrations of AlEtCl2. The reason for this decomposition may be due 

in part to rearrangement of the ligands. Cohen and co-workers (119) have 

found that the (Me0)3PAlEtCl2 adduct rearranges to form the phosphonate 

complex, (Me0)2MeP0AlEtCl2. Adducts formed from either (^-PrO)3P or (^ 

BuO)^? with AlEtCl2 were not obtained, as they spontaneously decomposed 

to give olefins, ethane, and alkyl chlorides. 
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Phosphites are also known to form adducts with boron compounds, such 

as BH3 and BF3. Gultneh (38) found that BF3 fails to act as a cocatalyst 

in the isomerization of 3-butenenitrile. An attempt was made to use BH3 

as a cocatalyst. It was observed that these systems were catalytically 

inactive. The NiL^ complex appeared to completely decompose upon 

addition of BH3 (as BH^zTHF complex). ^^B NMR was employed to 

investigate the mode of decomposition of this system. A 1 to 1 mixture 

of _9_and BH3 in C5D5 showed a doublet in the ^^B NMR spectrum at -42.7 

ppm, (Jg_p = 102 Hz). This chemical shift and coupling constant is 

consistent with what is observed for other BH3 adducts of various 

phosphites (120). However, addition of 1 equivalent of THF:BH3 to an 

equivalent of Ni(2)4. in C5D5 failed to show any peaks in the region of 

-42 ppm. The only peaks observed were at +17.5 and -0.06 ppm. The peak 

at -0.06 was later shown to be from unreacted THF/BH3 complex (120). The 

peak at +17.5 ppm was found to be consistent with the resonance observed 

for other alkyl borates (120). In particular, B(0-j_-Pr)3 exhibits a 

resonance at +17.5 ppm (120). 

It would appear that instead of promoting dissociation of NiL^ 

complexes, as was the case with AICI3, BH3 coordinates to one of the 

oxygens in the phosphite and facilitates the breaking of the P-0 bond and 

subsequent formation of a B-OR linkage. Decomposition of the ligand 

probably occurs while it is coordinated to the nickel atom, since it is 

known that stable adducts form when the ligand is uncoordinated. 

It is conceivable that this decomposition occurs with the breaking of 

either or both the exocyclic and cyclic P-O-C linkages. ^^B NMR analysis 
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of a I to 1 mixture of Ni(11)4 and THFiBHg showed the presence of a 

single peak in the borate region of the spectrum at +18.3 ppm. Due to 

the bicyclic structure of _n this would seem to indicate that BH3 can 

cleave a cyclic P-O-C linkage. It is thus reasonable to believe that BH3 

can also open up the P-O-C linkage in the phosphorinane ring. The 

resulting B-O-R linkage produced is structurally similar to a B-0-j_-Pr 

group, thus giving an identical chemical shift. 

Crystal and molecular structure of Ni(^)4 

As was previously stated, work with 2-alkoxy-l,3,2-dioxaphos-

phorinanes showed that these ligands can adopt conformations wherein the 

alkoxy group is equatorial or axial with respect to the ring. When 

methyl groups are placed in the equatorial 4,6 positions of the ring it 

is possible to isolate products isomeric at phosphorus (58). The rings 

are locked into their conformations since 1,3-diaxial interactions 

between methyl groups would occur if the ring changed its conformation. 

However, when these methyl groups are not present the ring can easily 

exchange conformation via a ring flip. Support for this statement comes 

from the small aH value of 1.34 kcal/mole for equilibrium in Equation 37 

(58) 

0 0 

0 Me 
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As previously stated, this isomerization at phosphorus leads to 

differences in the phosphorus basicity of the ligands. In discussing the 

differences in the catalytic activity of various NiL^ complexes, Gultneh 

(38) suggested that the lack of activity of complexes with ligands which 

do not contain 4,6 methyl groups arises from changes in conformation of 

the ligand upon coordination. This would account for changes in the 

electronic properties of the ligand and hence the complex. In complexes 

containing 2-alkoxy-5,5-dimethyl-l,3,2-dioxaphosphorinane ligands, it is 

conceivable that 1,3-syndiaxial steric interactions could force the 

exocyclic groups to adopt an equatorial conformation via a flipping of 

the ring. In the 4-methyl or 4,6-dimethyl systems, such a ring flip 

would be energetically unfavorable, but it still would be possible for 

the ring to adopt a twist boat conformation which could lead to 

differences in the steric properties of the ligand. 

In order to see if the ligand could change conformation upon 

coordination to a zero valent nickel atom, an X-ray structural analysis 

was carried out. First, an X-ray crystallographic analysis of Ni(54)^ 

was attempted. However, attempts to solve the structure proved 

unsuccessful due to the apparent high symmetry of the ligand and the 

complex it formed. In order to eliminate the problem of high symmetry. 

Ni(^)4 was prepared. In this complex, the isopropyl group was replaced 

with a less symmetric sec-butyl group. Upon making this change, 

subsequent solution of the structure was carried out successfully. Final 

positions, bond distances and angles, and anisotropic thermal parameters 

for Ni(^)4 can be found in Tables 12, 13, 14, and 15, respectively. 
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Table 12. The final positional parameters for atoms contained in Ni 

with their estimated standard deviations (in parentheses) ® 

atom X y z 

Ni q.o 0.2735(1) 0.2500 

PA 6.4381(2) 0.8418(2) 0.3164(2) 

OlA 0.3269(5) 0.8715(5) 0.2894(4) 

02A 0.4283(5) 0.7973(5) 0.3852(4) 

03A 0.4863(6) 0.9254(5) 0.3441(4) 

CIA 0.2727(12) 0.9056(9) 0.3365(8) 

C2A 0.3729(11) 0.8322(10) 0.4294(7) 

C3A 0.2656(11) 0.8486(11) 0.3947(8) 

C4A 0.2132(10) 0.7736(10) 0.3686(8) 

C5A 0.2150(12) 0.8931(13) 0.4459(8) 

C6A 0.5929(10) 0.9318(8) 0.3624(9) 

C7A 0.6279(12) 0.9222(12) 0.4393(8) 

C8A 0.6160(13) 1.0100(12) 0.3330(13) 

C9A 0.7255(30) 1.0181(14) 0.3523(17) 

PB 0.6178(2) 0.7077(2) 0.3040(2) 

018 0.7022(5) 0.6815(5) 0.2644(4) 

02B 0.6821(5) 0.7535(5) 0.3683(4) 

03B 0.6012(7) 0.6229(5) 0.3358(6) 

CIB 0.7953(11) 0.6532(10) 0.3033(9) 

C2B 0.7760(10) 0.7181(10) 0.4028(8) 

C3B 0.8468(9) 0.7109(10) 0.3557(8) 

C4B 0.9419(10) 0.6690(11) 0.3967(9) 

C5B 0.8716(9) 0.7864(8) 0.3247(8) 

C6B 0.5163(11) 0.6096(11) 0.3653(10) 

C7B 0.4779(13) 0.5242(11) 0.3422(11) 

C8B 0.5558(16) 0.6186(15) 0.4401(12) 

C9B 0.4766(20) 0.6086(18) 0.4758(15) 

^Positional parameters are listed in .fractional unit cell 
coordinates. 
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Table 13. Bond distances (A) and their estimated standard deviations (in 
parentheses) for Ni 

Ni-PA 2.103(3) Ni-PB 2.101(3) 

PA-OIA 1.609(7) PB-OIB 1.618(9) 

PA-02A 1.627(9) PB-02B 1.626(8) 

PA-03A 1.636(8) PB-03B 1.629(9) 

OIA-CIA 1.457(20) OIB-CIB 1.451(16) 

02A-C2A 1.430(19) 02B-C2B 1.477(16) 

03A-C6A 1.453(16) 03B-C6B 1.447(22) 

C1A-C3A 1.555(23) C1B-C3B 1.520(22) 

C3A-C2A 1.536(20) C3B-C2B 1.514(23) 

C3A-C4A 1.520(24) C3B-C4B 1.580(20) 

C3A-C5A 1.571(26) C3B-C5B 1.514(23) 

C6A-C7A 1.548(23) C6B-C7B 1.599(26) 

C6A-C8A 1.533(27) C6B-C8B 1.515(30) 

C8A-C9A 1.495(43) C8B-C9B 1.448(40) 

®For symmetry nonrelated ligands, 
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Table 14. Bond angles (°) and their estimated^standard deviations (in 
parentheses) for Ni(_^)4® 

PA-Ni-PB 109.97(13) 

Ni-PA-OIB 116.68(34) Ni-PB-OIB 116.97(33) 

Ni-PA-02A 114.11(35) . Ni-PB-02B 113.41(33) 

Ni-PA-03A 121.35(39) Ni-PB-03B 122.08(35) 

01A-PA-02A 101.38(46) 01B-PB-02B 101.69(42) 

02A-PA-G3A 102.55(47) 02B-PB-03B 102.37(48) 

01A-PA-03A 97.63(44) 01B-PB-03B 97.15(49) 

PA-OIA-CIA 119.48(75) •PB-OIB-CIB 118.38(93) 

PA-02A-C2A 119.70(87) PB-02B-C2B 117.74(84) 

PA-03A-C6A 118.46(77) PB-03B-C6B 119.94(96) 

01A-C1A-C3A 111.76(1.27) 01B-C1B-Ç3B 113.63(1.26) 

C1A-C3A-C2A 104.88(1.30) C1B-C3B-C2B 103.04(1.22) 

C1A-C3A-C4A 111.71(1.25) C1B-C3B-C4B 107.05(1.33) 

C1A-C3A-C5A 107.79(1.46) C1B-C3B-C5B 112.43(1.31) 

C3A-C2A-02A 112.55(1.15) C3B-C2B-02B 110.84(1.19) 

03A-C6A-C7A 109.90(1.36) 03B-C6B-C7B 105.82(1.50) 

03A-C6A-C8A 104.52(1.11) 03B-C6B-C8B 104.16(1.37) 

C6A-C8A-C9A 105.24(1.67) C6B-C8B-C9B 109.74(1.85) 

C7A-C6A-C8A 116.15(1.49) C7B-C6B-C8B 114.70(1.77) 

C2A-C3A-C4A 110.64(1.41) C2B-C3B-C4B 106.44(1.28) 

C2A-C3A-C5A 107.93(1.20) C2B-C3B-C5B 115.27(1.37) 

®For symmetry nonrelated ligands. 
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Table 15. Thermal parameters and their estimated standard deviations (in. 
parentheses) for Ni 

atom Bll B22 B33 BI2 BI3 ®23 

Ni 3.8(1) 4.8(1) 5.5(1) 0.0(0) 0.2(1) 0.0(0) 

PI 4.3(2) 5.3(2) 5.5(2) 0.5(1) 0.1(1) -0.1(1) 

P2 4.6(2) 4.8(2) 6.4(2) 0.3(1) 0.2(1) 0.3(1) 

OlA 4.4(3) 6.7(4) . 5.9(4) 0.9(3) 0.4(3) 0.2(4) 

02A 5.9(4) 7.7(5) 5.2(4) 1.3(4) 0.9(4) 0.7(4) 

03A 5.9(4) • 5.5(4) 8.3(5) -0.4(3) 0.5(4) -1.6(4) 

GIB 4.7(4) 5.9(4) 8.2(5) 1.1(3) 1.5(4) -0.9(4) 

02B 4.6(4) 6.5(4) 6.3(4) 0.8(3) -0.7(3) 0.2(4) 

03B 6.0(4) 5.4(4) 11.8(7) 0.6(4) 0.8(5) 2.3(4) 

CIA 6.7(6) 8.4(9) 7.4(9) 2.6(8) 0.1(7) -1.0(8) 

C2A 6.6(9) 11.0(12) 6.7(8) 0.5(8) 1.9(7) 1.4(9) 

C3A 7.1(8) 12.1(12) 6.3(8) 4.2(9) 1.5(6) 1.0(9) 

C4A 6.1(7) 10.7(11) 9.7(10) -1.9(8) 0.4(6) 0.9(9) 

C5A 10.2(10) 17.8(16) 7.5(8) 5.9(10) 3.8(8) -1.1(10) 

C6A 6.0(8) 4.4(7) . 11.6(11) -0.7(6) 0.7(7) -1.1(7) 

C7A 8.9(9) 17.2(15) 6.6(9) , -1.1(10) -1.4(8) -0.9(10) 

C8A 4.3(8) 8.6(11) 18.9(20) 0.5(7) -0.3(10) -0.3(12) 

C9A 17.5(21) 11.1(15) 24.3(25) -0.2(15) 4.3(19) 2.1(16) 

CIB 6.2(9) 7.8(9) 12.4(15) 2.9(8) 1.4(8) -0.2(10) 

®The form of the anisotropic thermal parameter is exp[-(Bii a*2h2 + 

B22b*2k2 + + (B12 a*b* hk + B^g a*c*hl + B23b*c*kl)/2]. 
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Table 15. (continued) 

atom Bll B22 B33 Bi2 Bl3 ®23 

C2B 5.8(7) 9.9(10) 5.9(8) 1.5(7) -1.4(7) 1.4(7) 

C3B 4.3(6) 9.6(10) 7.7(8) 2.2(7) -0.2(6) -1.4(8) 

C4B 6.2(7) 13.8(13) 11.1(11) 4.4(8) -1.0(7) 2.6(10) 

C5B 5.9(7) 6.6(7) 10.0(9) -1.0(6) 0.2(6) 0.9(7) 

C6B 6.3(7) 11.3(12) 9.3(11) 0.8(8) 1.8(8) 3.3(9) 

C7B 9.3(10) 9.3(10) 17.6(17) -3.8(9) 4.4(11) 1.3(11) 

C8B 11.9(13) 14.5(15) 11.7(15) -0.1(14) 5.7(12) 1.4(14) 

C9B 16.3(18) 19.7(23) 20.1(23) 5.4(18) 7.4(17) 5.1(20) 

Structure factors for the complex can be found in Appendix 1. An ORTEP 

diagram of the fragment containing the nickel atom and two of its four 

symmetry nonrelated ligands is shown in Fig. 9. For clarity, the 

symmetry-related ligands are not shown. 

Solution of the structure revealed that a slightly distorted 

tetrahedral coordination was maintained around the nickel atom (< P-Ni-P 

= 110.0°). This coordination has been found in other zero-valent nickel 

complexes such as Ni (PPh3)2(C0)2 (121), Ni(CH2=CHCN)2(P(0Ph)3)2 (5) and 

Ni(C0)3(P(i^-Bu)3) (122). This geometry is consistent with sp^ 

hybridization on nickel due to its filled d^^ configuration. 

The ligand used in the preparation of Ni(£)4 is believed to contain 

the sec-butyl group primarily in the axial conformation (38) in its 

uncoordinated state. It thus appears that this remains the case upon 

coordination. 
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One of the most interesting features of the structure is the 

extremely short nickel phosphorus bond distance of 2.109(3)A. In fact, 

this distance is as short as the 2.116(10)A which has been observed in 

(123,124). This shorter distance is surprising considering the 

high degree of u-back donation from nickel to phosphorus which is 

believed to strengthen the Ni-P bond. The possible effect of increased 

n-back bonding may also be illustrated by shortening of the Ni-P bond in 

Ni(P(0Me)3)4 Br"*" versus Ni(PMe3)/|,Br'*'; however, steric effect may be 

dominant. The averages for the axial and equatorial Ni-P distances in 

Ni(P(0Me)3)4Br^ are 2.18 A and 2.22.A, respectively (125), while in 

Ni(PMe3)4Br* the distances are 2.25 A and 2.25 A, respectively (126). 

However, the reason for the short Ni-P distance in Ni(6)4 is not known at 

this time. Further analysis revealed that all the phosphorinane bond 

distances and angles in Ni(^)4 are consistent with those found in the 

similar phosphorinane complex, cis-Mo(C0)/i (38)? (127). These bond 

distances and angles were also similar to those found in uncomplexed 

phosphorinane compounds (128). As previously stated, the ligands adopt a 

chair conformation with an axially oriented sec-butoxy group. Each of 

the symmetry nonrelated ligands failed to show any twist in their chair 

conformation as the torsional angles described by atoms OIB, 02A, C2A, 

CIA and OIB, 02B, CIB, C2B were equal to 0.0° and 1.39°, respectively. 

Molecular models of the complex indicate that there could be favorable 

hydrogen bonding interactions between an exocyclic oxygen and the 

hydrogen on the CH group of its symmetry related (C2) sec-butoxy group. 



www.manaraa.com

Ill 

The calculated H-0 distance of 3.3 A is at the outer limit of this type 

of bonding interaction (129). 

One of the goals of this structural analysis was to understand the 

possible interactions between ligands which could account for the 

increased activity of a complex containing ligands with equatorial 4,6-

dimethyl groups. Unfortunately, we were unable to crystallize a complex 

which contained these types of ligands. However, using data from the 

structural analysis of Ni(_6).4, we were able to calculate the imaginary 

positions of equatorial 4,6 methyl groups using a C4 to methyl distance 

of 1.54 A and C(methyl)-C4-H(ax) angle of 109.5°. From these 

calculations, the distance between methyl groups on adjacent ligands is 

6.0 A, which is larger than the sum of the van der Waal s radii (4 A) of 

two methyl groups. Inspection of a model of the structure revealed that 

significant-steric interactions exist only between methyls in the 4 and 6 

positions of the ring and the exocylic groups of other ligands. 

Calculations of the distance between the imaginary C4 and C6 methyl 

groups of the ring to the C8 methylene and C7 methyl groups contained on 

other ligands varied from 3.6 to 4.6 A. These distances seem to suggest 

that there is the possibility of steric interactions among these 

groups. The structure also seems to suggest that as the exocyclic group 

grows larger from methyl to isopropyl, an interaction begins to develop 

between these groups and the methyl groups located in the equatorial 4,6 

positions of the adjacent phosphorinane rings. However, when the 

exocyclic groups become exceedingly large, (e.g., _t-butyl or bornyl), the 

exocyclic groups swing away from each other in order to reduce steric 
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interactions. This results in an increase in the distance between the 

exocyclic groups and 4,6 equatorial methyl groups on adjacent ligands, 

thus decreasing the steric interactions between the ligands. 

These types of steric interactions may serve to increase the extent 

of ligand dissociation in these HNiL^* complexes, thus resulting in the 

higher rates of catalysis for the isomerization of 3-butenenitrile. The 

reason why Ni(2)4 gives the highest rate of catalysis may be due to 

optimization of this steric effect when an isopropyl group is in the 

exocyclic position. 

A decrease in the rate of catalysis was observed upon placing groups 

larger than isopropyl in the exocyclic position of the ring. A possible 

explanation of this result is that these groups sterically interfere with 

coordination of the olefin to the metal atom. However, this argument 

loses some of its attractiveness when one considers that if the 

phosphorinane ring fails to contain any methyl groups in the equatorial 

4,6 positions, catalysis is observed only when a methoxy group is bound 

in the exocyclic position. Since no catalysis is observed with compound 

Ni(31)41 while catalysis is observed with Ni(2)4, it would seem 

unreasonable that the exocyclic group interferes with olefin coordination 

to the nickel. Therefore, it is more likely that the presence of 4,6 

equatorial methyl/exocyclic group interactions account for the large 

changes in the observed rates of catalysis. 
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Effect of substitution of oxygens in the phosphorinane ring by carbon 

As was mentioned earlier, a striking result of Gultneh's work was 

the tremendous increase in catalytic activity of Ni(2)4 compared to its 

acyclic analogue. Ni (P(0-_i_-Pr)3)4. Gultneh contended that the source of 

this difference in activity was due to subtle changes in the electronic 

properties of the ligand. Verkade (12) has shown that some cyclic 

phosphites have a smaller P-O-C angle than what is observed in their 

acyclic analogues. This decrease in the P-O-C angle has been shown to 

bring about a decrease in the basicity of the phosphite. This decrease 

in basicity can be shown by measurement of the Jp_H value upon 

protonation of the ligand. 

As previously described, the more basic the phosphite, the smaller 

the value of Jp_n. The Jp_H value for HP(0-j_-Pr)3'*' was found to be 795 

Hz (109), while Gultneh (38) found the for H(2)^ to be 853 Hz. 

Clearly, the acyclic ligand is the one which is more basic. This 

increased basicity should impart more basicity to the nickel atom, thus 

facilitating protonation. This increase in the extent of protonation 

should cause an increase in ligand dissociation, and hence increase the 

catalytic activity of the complex. However, this turns out to be 

directly opposite to what is observed experimentally. 

Solutions which contain Ni(P(0-J_-Pr)3)4 are yellow in color. 

Addition of acid to these solutions brings about an increase in the 

intensity of the yellow color. However, solutions of Ni(2)4 appear 

colorless. The development of the yellow color occurs only when acid is 

added. " It has been shown fairly conclusively (108) that this yellow 
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color indicates the presence of NiLg species in solution. Based upon 

either of the previously described isomerization mechanisms, HNiLg^ or 

NiLg are known to be the catalytically active intermediates. The 

question then posed is the following: If Ni(P(0-j_-Pr)3)4 more 

dissociated in solution than Ni(2)4, then why is it a poorer catalyst 

than Ni(_9.)4? In order to explain this difference in activity, Gultneh 

contends that Ni (P(0-i_-Pr)3)4 decomposes more" quickly in the strongly 

acid media than Ni(2)4. However, results of the present work have shown 

that there is very little difference in the rate of decomposition of both 

complexes in acid solution. This decomposition is evidenced by the 

solution turning from yellow to green, indicative of the formation of 

Ni (II) species. Gultneh also contends that electronic factors cause a 

difference in the extent to. which both compounds dissociate in 

solution. He also states, based upon previous work, that the steric 

difference between P(0-j_-Pr)3 and 2 is minor. These conclusions do not 

appear credible since: a) Tolman (19) has shown that steric factors are 

more important than electronic factors in the extent to which a NiL^ 

complex will dissociate; b) Based upon the increase in the extent of 

dissociation which is observed from Ni (P(0-J_-Pr)3)4 over Ni (2)4 it would 

appear that P(0-_i_-Pr)3 has greater steric bulk than _9r This increased 

extent of dissociation is evidenced by solutions of Ni(P(0-j_-Pr)3)4 being 

yellow in color as opposed to solutions of Ni(2)4 which are colorless. 

Tolman and Gosser have previously stated (108) that the yellow color 

stems from the presence of dissociated Ni(P(0-j_-Pr)3)3 species. 

Unfortunately, measurement of the cone angle of the free ligand may not 
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provide any useful information about the steric demands of the ligand 

upon coordination to a metal, since there is no way of determining the 

exact orientation of the substituents on phosphorus in either a NiL^ or 

NiLg complex. However, it can be argued that the number of degrees of 

freedom of the OR group on phosphorus are less in 2 than in P(0-_i_-Pr)3 

due to the cyclization of the ring. In fact, the' isopropyl groups in 

P(0-j_-Pr)3 should be free to adopt any geometry which minimizes their 

interactions. It is believed that the isopropyl group in the resulting 

Ni (P(0-j_-Pr)3)3, complex could partially block coordination of the olefin 

to the nickel atom, thus reducing the activity of the system. This 

argument can be extended to the HNi (P(0-J_-Pr)3)3''' species which forms in 

protic media. 

Tolman and Gosser have suggested (108) that the geometry of a NiL3 

species is trigonal planar. His assertion is supported by a recent x-ray 

structural analysis of the isoelectronic compound Pt(PPh3)3 which was 

observed to be trigonal planar (130). Molecular models of Ni(P(0-j_-

Pr)3)3 would suggest that due to the higher degrees of freedom for the 

isopropyl arms of the ligand it is reasonable to expect that some of 

these isopropyl groups will spend part of their time situated above and 

below the nickel atom. This geometry is also stabilized by weak hydrogen 

bonding interactions which could develop between the CM of one isopropyl 

group and oxygens contained on adjacent ligands. One would expect that 

this geometry would hinder olefin coordination to the metal and thus slow 

the rate of catalysis. 
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However, with Ni (2)4 it would appear that steric interactions 

between the ligands are not large enough to cause ligand dissociation to 

take place in the unprotonated complex. Dissociation is thus only made 

facile upon protonation of the nickel. Once protonation does occur, the 

Ni-P bond is weakened sufficiently so that the steric interactions which 

occur in the complex can promote dissociation. Since there is less 

freedom of movement for the OR groups in the cyclic ligands, it should be 

more difficult for these groups to situate themselves directly above and 

below the nickel atom; thus, the olefin can easily coordinate to the 

metal atom and undergo isomerization. 

In order to see if constraint of the P-O-C angles in 9_as compared 

to P(0-i_-Pr)3 could account for the large difference in activity of the 

c o m p l e x e s ,  G u l t n e h  p r e p a r e d  t h e  c o r r e s p o n d i n g  p h o s p h i n i t e  l i g a n d s a n d  

28. In these ligands, molecular constraint of oxygen can not be present 

since the oxygens are replaced by CHg groups. It was reported that 

Ni(28)4 is a more effective catalyst than its acyclic analogue. 

Ni(25)4. However, the 12% difference in the number of catalytic 

cycles/30 min. that each produced was small compared to the 2000% 

difference that was observed with the analogous phosphites during same 

time period. It was suggested (38) that the large difference in rates 

between the phosphite and the phosphinite complexes was due to the 

presence of the oxygens contained in the phosphite ligands. 

In the discussion of the phosphinite complexes, no mention was made 

of the presence of the conformational isomers ^ and It was known 

that the conformation of the exocyclic group on phosphorus influences the 
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phosphorus basicity (19). Since it had been shown that both conformers ^ 

and ^ could be prepared and isolated, it seemed reasonable that 

conformers^ and_28 could be prepared and isolated. It was thought that 

perhaps one of the conformera would produce a more active complex than 

the other due to basicity and/or steric differences. Perhaps the 

activity which was observed with the phosphinites was due to the weighted 

averages of the amount of each isomer coordinated to the nickel atom. 

Attempts to prepare a sample of the free ligand according to the 

procedure of Gultneh (38) met with repeated failure (Eqs. 38, 39). 

^ /MgBr 

EtgO 
+ 2 Mg — 

"A, 
Br ^MgBr 

MgBr 

+ ClgPO-i-Pr— 

MgBr 
+ 2 MgBrCl 

This problem was further complicated by the fact that the meso-2,4-

dimethyl-l,5-dibrotnopiintane was obtained in only 7.2% overall yield as 

described in scheme (5). In order to determine the optimum conditions 
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for producing and 28, attempts were made to prepare the unsubstituted 

ring compound ^ via Equations 40 and 41 using the commercially available 

1,5-dibromopentane. 

+ 2 Mg 

EtgO 

MgBr 

+ Cl,PO-i-Pr + 4 CnHcN > 
2 - 5 5 _ygo 

MgBr 

MgBr 

(40) 

MgBr 

P 

0-i-Pr 

+ 2 MgBrCl:(NCsHg)2 

(41) 

It was found that by adding pyridine to the reaction of the Grignard 

reagent and CI2^(01Pr) (Eq. 41), the yield of cyclic phosphinite (26) 

could be enhanced. Kabachnik and Tsvetkov (131) were the first to show 

that the yield of a phosphinite (R2P(0R)) in these types of Grignard 

reactions could be greatly improved by the presence of pyridine. It 

appeared that the pyridine assisted in the displacement of the 

phosphinite from their complexes with the magnesium halide, which was 

produced in the above reaction. 

As previously stated in the experimental section, the oil which was  

obtained from reaction (40) was shown to contain two phosphorus species 
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in a ratio of 20 to 1 by NMR spectroscopy. Integration of the 

spectrum of the oil which was obtained was found to be consistent with 

the proposed structure of_^. Attempts to purify the material by 

distillation were unsuccessful due to decomposition that took place 

during heating. Kosolopoff and Maier have shown (132) that similar 

phosphinites are unstable towards rearrangement to tertiary phosphine 

oxides upon heating (Eq. 42). 

RgP-OR' >R2P(0)R' (42) 

To further confirm the identity of the product of reaction (41), the oil 

which was obtained was derivatized by an Arbusov reaction (Eq. 43) using 

triphenylmethyl chloride. The NMR, ^^P NMR and mass spectral 

Î .  §  
O-l-Pr /jl^ + Ph^CCl > +l-PrCl (43) 

i-PrO^ 
- p 

CPhj 

data which were obtained on the product ^ was consistent with its 

proposed structure. 

Upon developing the proper reaction conditions for the synthesis of 

these types of cyclic phosphinites, reactions 38 and 39 were reattempted. 

In order to determine the conformational distribution of 27 and 28 

contained in the product, the mixture was immediately reacted with 
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tri phenyl methyl chloride in order to obtain more stable derivatives. 

White (99) has shown that the Arbusov rearrangement of 8 and 38 with 

tri phenyl methyl chloride proceeds with retention of configuration. 

Therefore, the relative amounts of compounds ^ and ^ should indicate 

the amounts of ̂  and ̂  in the original reaction mixture. 

I II 
CPhj 0 

29 30 

NMR analysis of the crude solid obtained from the reaction of 27 

and_28 with tri phenyl methyl chloride showed the presence of many peaks. 

However, two peaks at 56.0 ppm and 53.6 ppm were observed in a 3 to 1 

ratio. Chromatographic separation of the mixture yielded an oil which 

exhibited only these peaks in the same ratio. Upon standing, crystals 

formed in the oil which exhibited a NMR chemical shift of 53.6 ppm. 

The remaining oil showed the other chemical shift at 55.7 ppm. Mass 

spectral analysis of both the oil and the crystals showed that they 

contained compounds which were similar in structure due to the similarity 

of their fragmentation patterns (Figs. 10 and 11) and the fact that they 

both yielded parent ions with m^Ye values of 388.1. An X-ray 

crystallographic analysis was carried out in order to determine whether 

conformer ^ or ^ was contained in the crystals. The analysis ravoaled 

the identity of the crystals to be 30. The final atomic positions, bond' 
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lengths and angles, and anisotropic thermal parameters appear in Tables 

16, 17, 18 and 19, respectively. . Structure factors for the compound are 

found in Appendix 2. An ORTEP diagram of the structure can be found in 

Fig. 12. A view of the unit cell is shown in Fig. 13. 

Table 16. Final positional parameters and their estimated standard 

deviations (in parentheses) for meso-

(CgH5)3C(0)P[CH2C(CH3)H]2CH2 (30)3 

atom X y z 

P 0.0637(1) 0.0752(1) 0.2462(1) 

0 0.1319(3) 0.0268(3) 0.2306(3) 

C 0.0971(4) 0.1413(4) 0.3559(4) 

CIA 0.0246(4) 0.1665(4) 0.4119(5) 

C2A 0.0142(5) 0.1472(4) 0.5012(5) 

C3A -0.0545(5) 0.1675(5) 0.5493(5) 

C4A -0.1154(5) 0.2068(5) 0.5089(6) 

C5A -0.1089(5) 0.2274(4) 0.4198(6) 

C6A -0.0384(5) 0.2082(5) 0.3718(5) 

CIB 0.1407(4) 0.2080(4) 0.3103(4) 

C2B 0.2040(4) 0.1922(4) 0.2535(5) 

C3B 0.2472(5) 0.2499(5) 0.2114(5) 

C4B 0.2282(5) 0.3257(5) 0.2291(6) 

C5B 0.1663(6) 0.3417(4) 0.2877(5) 

^Position parameters are listed in fractional unit cell coordinates, 
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Table 16. (continued) 

atom X y z 

C6B 0.1231(4) 0.2834(4) 0.3287(5) 

CIC 0.1570(4) 0.1015(4) 0.4171(5) 

C2C 0.1552(5) 0.0226(5) 0.4335(6) 

C3C 0.2069(5) -0.0105(5) 0.4963(6) 

C4C 0.2623(5) 0.0300(5) 0.5435(5) 

C5C 0.2655(5) 0.1086(5) 0.5264(5) 

C6C 0.2138(5) 0.1424(5) 0.4640(5) 

Cl 0.0201(5) 0.1292(4) 0.1725(5) 

C2 -0.0143(6) 0.0742(6) 0.1017(5) 

C3 -0.0530(7) _ 0.1235(6) 0.0243(6) 

C4 -0.0786(5) 0.0244(5) 0.1433(5) 

C5 -0.1227(6) -0.0802(6) 0.2496(7) 

C6 -0.0524(6) -0.0283(5) 0.2192(5) 

C7 -0.0227(4) 0.0189(4) 0.3009(5) 
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Table 17. Bond distances (A) and their estimated standard deviations (in 
parentheses) for meso-(Cf:Hq)iC(0)P[CHpC(CHi)H]pCHp (30) 

P^O 1.501(5) C1C-C2C 1.413(11) 

P-C 1.879(7) C2C-C3C 1.397(12) 

P-Cl 1.816(8) C3C-C4C 1.359(12) 

P-C7 1.824(8) C4C-C5C 1.411(12) 

C1-C2 1.542(12) C5C-C6C 1.398(11) 

C2-C3 1.580(13) C6C-C1C 1.374(11) 

C2-C4 1.513(13 

C4-C6 1.528(12) 

C6-C5 1.548(14) 

C6-C7 1.556(11) 

C-CIA 1.528(10) 

C-CIB 1.539(10) 

C-CIC 1.519(10) 

C1A-C2A 1.385(11) 

C2A-C3A 1.392(11) 

C3A-C4A 1.364(12) 

C4A-C5A 1.381(12) 

C5A-C6A 1.41(11) 

C6A-C1A 1.409(11) 

C1B-C2B 1.376(10) 

C2B-C3B 1.393(11) 

C3B-C4B 1.398(11) 

C4B-C5B 1.375(12) 

C5B-C6B 1.393(11) 

C6B-C1B 1.387(10) 

C1C-C2C 1.413(11) 

C2C-C3C 1.397(12) 

C3C-C4C 1.359(12) 

C4C-C5C 1.411(12) 

C5C-C6C 1.398(11) 

C6C-C1C 1.374(11) 
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Table 18. Bond angles (°) and their estimated standard deviations (in 
parentheses) for meso-(CRHc;)iC(0)P[CH9C(CH'^)H]9CH9 (30) 

0-P-C 111.96(31) C2B-C1B-C6B 118.44(67) 

0-P-Cl 110.19(33) C1B-C2B-C3B 121.26(69) 

0-P-C7 112.38(34) C2B-C3B-C4B 119.92(73) 

C-P-Cl 109.88(34) C3B-C4B-C5B 118.84(76) 

C-P-C7 110.46(33) C4B-C5B-C6B 120.69(75) 

C1-P-C7 101.50(36) C1B-C6B-C5B 120.78(73) 

P-C-CIA 110.25(48) C-C1C-C2C 122.93(66) 

P-C-CIB 106.88(43) C-C1C-C6C 120.68(66) 

P-C-CIC 110.06(49) C2C-C1C-C6C 116.29(69) 

CIA-C-CIB 112.77(59) * C1C-C2C-C3C 120.95(75) 

CIA-C-CIC 108.63(54) C2C-C3C-C4C 122.81(79) 

CIB-C-CIC 108.21(57) C3C-C4C-C5C 116.59(74) 

C-C1A-C2A 123.38(65) C4C-C5C-C6C 121.01(73) 

C-C1A-C6A 120.16(64) C1C-C6C-C5C 122.34(74) 

C2A-C1A-C6A 116.36(67) P-C1-C2 109.44(56) 

C1A-C2A-C3A 122.23(71) C1-C2-C3 107.69(74) 

C2A-C3A-C4A 120.52(74) C1-C2-C4 110.11(66) 

C3A-C4A-C5A 119.99(78) C3-C2-C4 109.47(79) 

C4A-C5A-C6A 119.35(75) C2-C4-C6 117.17(76) 

C1A-C6A-C5A 121.52(70) C4-C6-C5 111.27(79) 

C-C1B-C2B 118.24(62) C4-C6-C7 110.07(73) 

C-C1B-C6B 123.15(64) C5-C6-C7 108.99(69) 

P-C7-C6 107.71(53) 
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Table 19. Thermal parameters and their estimated standard deviations^ 
(in parentheses) for meso-(Cf;Hi;)-^C(0)P[CH?C(CH-^)H]9CH9 (30) 

atom Bll hz B33 BI2 Bl3 

C
O

 C
O

 
C

O
 

P 6.0(1) 6.1(1) 4.8(1) -0.5(1) -0.1(1) 0.0(1) 

0 5.6(3) 7.3(3) 6.8(3) 0.6(3) 1.0(2) -1.0(3) 

C 5.5(5) 6.1(4) 3.9(4) 0.5(4) -0.4(3) -0.4(4) 

CIA 6.0(5) 5.6(5) • 5.9(4) -0.3(5) -0.1(4) -0.2(4) 

C2A 6.2(6) 7.0(6) 5.4(4) 0.0(5) 1.0(4) 1.0(4) 

C3A 9.2(6) 8.3(6) 5.7(6) -0.7(6) 1.3(5) 0.4(5) 

C4A 8.1(7) 8.1(6) 7.3(6) 0.1(6) 2.1(5) 0.10(5) 

C5A 7.0(6) 8.1(6) 7.0(6) 0.9(5) -0.1(5) -0.6(5) 

C6A 7.6(8) 7.9(6) 5.2(5) 0.4(5) 0.8(5) -0.5(5) 

CIB 5.8(5) 5.3(5) 4.9(4) -0.0(4) -0.6(4) -0.4(4) 

C2B 6.1(5) 6.1(5) 6.2(5) -0.7(4) 0.1(5) 0.4(4) 

C3B 6.8(6) 8.1(6) 6.5(5) -0.8(6) -0.1(4) -0.2(5) 

C4B 7.8(6) 8.0(7) 7.3(6) -2.2(6) -0.6(5) 1.2(6) 

C5B 9.5(7) 5.9(6) 7.9(6) 0.5(6) -0.5(5) 0.1(5) 

C6B 7.6(6) 5.9(5) 6.2(5) -0.27(5) 0.1(4) -0.1(4) 

CIC 5.2(5) 6.6(5) 5.0(4) -0.7(4) -0.3(4) -0.4(4) 

C2C 7.5(6) 6.7(6) 7.8(6) -0.5(5) -2.6(5) 0.2(5) 

C3C 9.5(6) 7.0(5) 8.4(6) -0.3(5) -3.1(6) 0.6(5) 

®The form of the anisotropic thermal parameter is exp[-(Biia*^h2 + 

B22b*2k*2 + 8330*^12)/r + (Bi2a*b* hk + Bi3a*c*hl + B23b*c* kl)/2]. 
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Table 19. (continued) 

atom Bll B22 B33 BI2 Bl3 B33 

C4C 7.0(6) 7.9(6) 6.4(5) 0.7(6) -1.11(5) 1.1(5) 

C5C 6.6(6) 9.2(7) 6.0(5) -1.0(5) -1.3(5) 0.1(5) 

C6C 6.9(5) 7.1(5) 5.9(5) 0.2(5) -0.7(4) 1.4(5) 

CI 8.1(5) 6.3(5) 4.2(4) 0.5(4) -0.5(4) 0.8(4) 

C2 • 11.7(7) 9.5(6) 6.1(5) -3.8(6) -1.9(5) 0.6(5) 

C3 15.2(8), 9.9(7) 6.9(6) -1.7(6) -4.9(6) 2.9(5) 

C4 8.0(6) 9.9(7) 5.8(5) -1.2(5) -1.3(5) -0.9(5) 

C5 11.8(8) 12.2(8) 10.3(7) -7.3(7) 0.5(7) -0.1(7) 

C6 11.5(7) 9.7(6) 5.5(5) -3.7(6) -2.7(5) 0.9(5) 

C7 5.6(4) 7.5(5) . 5.9(4) -1.9(4) 1.3(4) 0.8(4) 

As can be seen in Fig. 12, the tri phenyl methyl group adopts the 

equatorial position with respect to the phosphorinane ring. The ring 

adopts the chair conformations which appears to be free of any twist as 

the torsional angles described by atoms P, CI, C2, C4 and P, C7, C6, and 

C4 are equal to 59.7® and -60.8, respectively. The acute angle formed by 

the planes C1-P-C7 and C7-C6-C2-C1 is 53.6°, which is fairly close to the 

60° angle found in the perfect chair conformation of cyclohexane. The 

rear of the phosphorinane ring comprised of the C2, C4, and C6 atoms does 

appear to be somewhat flattened since the acute angle between the least 

square planes encompassing the C2, C4, C6 and CI, C2, C6, C7 atoms is 
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Figure 13. Unit cell diagram of 30. 
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equal to 39.2°. This deviation from 60° can only be ascribed to packing 

forces within the crystal, since there appears to be no steric 

interactions with any other parts of the molecule which could account for 

this flattening. All other bond distances and angles are consistent with 

those found in other 2-alkoxy-2-oxo-l,3,2-dioxaphosphorinanes (99). 

Reactions of cyclic phosphites and tri phenyl methyl chloride are 

known to yield Arbusov products in which the original conformation about 

phosphorus is retained (133). Since the reaction of.the phosphinite and 

tri phenyl methyl chloride presumably takes place by the same mechanism as 

with a phosphite, the percentage of .each configuration in the resulting 

tertiary phosphine oxide mixture should be the same as in the starting 

phosphinite mixture. Based upon information supplied by the X-ray 

crystallographic analysis, we are able to assign the peak at 53.6 ppm of 

the phosphine oxide mixture to configuration ^ while the peak at 56.0 

ppm is assigned to_^. Since the ratio of the peak areas in the NMR 

spectrum is 3 to 1, this should correspond to a ratio of 3 to 1 in the 

original phosphinite mixture. 

As stated previously, in 2-alkoxy-l,3,2-dioxaphosphinanes the 

conformation with the axial alkoxy group and an equatorial lone pair is 

preferred. This conformation is preferred in order to minimize 

electronic interactions between the lone pairs on phosphorus and the lone 

pairs on oxygen. However, phosphorinanes which do not contain oxygen in 

the ring prefer to adopt the conformation which has the alkoxy group in 

an equatorial position and a lone pair in the axial position. This 
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conformation reduces the steric interaction between the exocyclic group 

and the rest of the ring (19). 

The 3 to 1 ratio of configurations was also verified by a NMR 

analysis of the product mixture obtained in reactions (37 and 38). 

Previous work had shown that compound^ exhibited a sharp singlet at 

108.8 ppm. Close scrutiny of the NMR spectrum of the mixture showed 

three peaks at 111.1, 109.4, and 107.4 ppm in a ratio of 1 to 3 to 1. 

The peaks at 109.4 and 107.4 ppm were assigned to compounds ^ and 

respectively. While the peak at 111.1 was ascribed to possibly 

oligomeric products formed in the reaction. The peaks were assigned as 

shown since work with the derivatized material indicated a 3 to 1 mixture 

of starting phosphinites. Also, it appeared that these peaks were 

observed to have NMR chemical shifts which were on either side of the 

corresponding unsubstituent phosphinite. As can be seen in Table 20, the 

decreasing NMR chemical shifts fall in the order: _56, and 57. 

Though the magnitudes of the differences in chemical shifts between 

compounds may be different in phosphites and phosphinites, the trends in 

chemical shifts may be expected to be the same due to the similarity of 

the compounds. 

Attempts to prepare and separateand_^ had proved 

unsuccessful. - ^^P NMR peak integration has shown that the compounds were 

prepared in less than 10% yield. Due to the low yield of the compounds 

and the fact that there was no known way of converting back the 

derivatized products to their starting phosphinites, it seemed that 
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Table 20. NMR Chemical shifts for selected phosphorinane 
compounds 

Compound Chemical shift (ppm) Compound Chemical Shift (ppm) 

132.9 IL 109.4 

130.0 _26 108 

57 127.1 28 107.4 

^Reference (38). 

^Reference (133). 

separation of the isomers would not be feasible. However, it was known 

(38) that NiL^ complexes of 28_and ^ could be made by reaction of the 

ligand obtained in reaction (38) with Ni(CH2=CHCN)2. The amount of 

Ni(CH2=CHCN)2 to be used was determined by the NMR spectrum of the 

oil which indicated the relative amount of^and_^ contained in a 

specific amount of the mixture. Unfortunately, repeated attempts to 

synthesize Ni (27,_^)4 were met with failure. In every case, 

unrecognizable products were obtained. NMR analysis of this material 

indicated the lack of any of the NiL^ complex as Gultneh (38) had 

described. However, attempts to prepare Ni(25)4 were successful. The 

final product obtained by chromatography under N2 was a greyish white 

solid which exhibited only one ^^P NMR chemical shift at +144.9 ppm, 22.9 

ppm downfield of the free ligand. In all the previously discussed 
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complexes, a downfield shift of approximately 20 ppm was observed for the 

ligand upon coordination. 

Attempts to use this compound in the catalytic isomerization of 3-

butenenitrile were unsuccessful. It was observed that upon addition of 

the acid to a benzene solution of the complex the solution took on a 

yellow-orange color. However, after about fifteen minutes the color had 

changed to green, indicative of nickel oxidation. This observation 

agrees with work of Carriatta and co-workers (134) who showed that only, 

zero-valent platinum phosphine complexes could be protonated by acid. 

Attempts to protonate the analogous.tetrakis phosphine palladium and 

nickel complexes yielded only nickel and pallium salts of the 

corresponding acid. 

This instability of NiL^ complexes of phosphines. and phosphinites 

toward acids can be explained by the electronic properties of the 

ligands. Since these ligands are known to be more basic than phosphites, 

they should impart more electron density to the nickel atom thus making 

it easier for its oxidation by acids. On the other hand, the phosphite 

is able to decrease the electron density on the nickel atom due to its 

increased n-acceptor and poorer a donation properties. It is this 

reduced electron density on nickel which prevents immediate oxidation by 

the acid. However, this reduction in electron density is still not 

enough to entirely prevent oxidation of the Ni{0) species. It only 

serves to slow down oxidation as evidenced by oxidation of a NifPfOR)])^ 

complex in acid approximately 6 hrs. (under anaerobic conditions). 

Fortunately, during this period, the HNiLg^ species, which is generated 
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from the NiL^ complex in protic acids, and the NiLg species generated 

with nonprotic acids can act as catalysts for olefin isomerization. 

However, it should also be realized that removal of electron density from 

the nickel by strong n-acceptor ligands can become so great, as in the 

case of_n and that the corresponding NiL^ fails to protonate; or in 

the case of nonprotic acid media, fails to dissociate sufficiently. 

Thus, it would appear that the unique electronic properties of phosphite 

ligands facilitate their use in NiL^/acid catalyst systems. 

Asymmetric isomerization of (CH3CH2)(CH3)C=CHCH2CN • 

Gultneh (38) found that Ni((-)-_7_)4 catalyzed the asymmetric 

isomerization of Et(Me)C=CHCH2CN to Et(Me)CHCH=CHCN. He observed that 

approximately 70% of the starting prochiral olefin could be isomerized, 

and a 52% enantiomeric excess could be achieved in a period of 2 hrs. 

Results obtained in the isomerization of 3-butenenitrile had shown 

that the most active catalysts were those which contained methyl groups 

in the equatorial 4 and 6 positions on the ring. It was thought that by 

synthesizing a chiral ligand with methyl groups in these positions and 

incorporating it in a NiL^ complex, isomerization of the above compound 

could be carried out more quickly with possibly a higher degree of 

enantiomeric excess. Compound 36 was prepared by the reaction of 4_ and 

d-sec butanol in the presence of triethyl amine. The NiL^ complex was 

prepared using the aforementioned method. Subsequent NMR analysis 

showed that the complex was completely protonated by a 10 to 1 acid to 

nickel ratio. This was evidenced by the disappearance of a singlet at 
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151.3 ppm for the NiL^ species and the appearance of a doublet at 131.8 

ppm (JH-M-P " 30 Hz) upon addition of acid. 

The complex was tried as a catalyst for the isomerization of Et(Me)C 

= CHCH2CN. However, repeated attempts showed that the complex was 

completely inactive as a catalyst. However, other experiments showed 

that the compound could efficiently isomerize 3-butenenitrile to cis and 

trans 2-butenenitrile (90 cycles/30 min). On the basis of these results, 

it was felt that Ni(36)4 failed to isomerize the prochiral olefin due to 

the latter's larger size compared to 3-butenenitrile. It would appear 

that Ni(2)4 was able to isomerize the prochiral olefin since the ligand 

was smaller thanand thus the prochiral olefin could more easily 

coordinate to the metal center and undergo isomerization. 

These results would seem to suggest, as was previously suggested by 

Parshall (1), that when designing a metal complex to be used as a. 

catalyst, one must not only take into account the steric requirements of 

the ligands about the metal, but also the steric requirements of the 

substrate. 

Hydrocyanation of 1,3-butadiene to adiponitrile 

The catalytic hydrocyanation of olefins has been of interest to 

industrial chemists for many years. The hydrocyanation of butadiene to 

adiponitrile (NC(CH2)4CN) is of considerable interest, because of the use 

of adiponitrile as a chemical intermediate in the production of synthetic 

polymers, such as nylon. Chemists at Dupont have patented the use of 

cuprous halides and nickel(0) complexes containing phosphite ligands, in 
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particular PfOPhjg (51) as catalysts for the production of adiponitrile 

from butadiene. The reaction of butadiene and HCN in the presence of 

these catalysts is thought to proceed via the following series of 

Equations 44-47. 

CH2=CHCH=CH2 + HCN —> CH3CH=CHCH2CN 

+ 

CH2=CH-CH(CH3)CN 

CH2=CH-CH(CH3)CN —> CH3CH=CHCH2CN 

CH3CH=CHCH2CN —> CH2=CHCH2CH2CN 

CH2=CHCH2CH2CN + HCN —> NC(CH2)4CN 

•M = Ni(P(0R)3)4 

It is claimed that complexes such as Ni(O-o-tolyl)3 can affect the 

conversion of 1,3-butadiene to adiponitrile in high yield and with high 

selectivity (1). 

It should also be noted that Monsanto Corporation has patented a 

process for the production of adiponitrile by electrodimerizing 

acrylonitrile (135). Acrylonitrile can be easily prepared by addition of 

HCN to acetylene via the use of catalysts such as Co2(C0)g and 

Ni(P(0Et)3)4 (47). The advantage of this process is that the 

adiponitrile can be produced without production of unwanted isomers as is 

the case with 1,3-butadiene. 

(44) 

(45) 

(46) 

(47) 
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Gultneh (38) found that the NIL^ complexes he used for olefin 

isomerization were also effective hydrocyanation catalysts. It was 

observed that the most efficient isomerization catalysts were also the 

most efficient for hydrocyanation. However, two major differences were 

observed. Though hydrocyanation of olefins such as norbornene was 

maximized with NiL^ complexes containing ligands with methyl groups in 

the equatorial 4,6 positions of the phosphorinane ring, changing the size 

of the exocyclic group had only a small effect in controlling the 

activity of the complex. It was observed that placement of an isopropyl 

group in the exocyclic position did seem to maximize the amount of 

catalysis observed in 4,6-dimethyl phosphorinane system. However, 

increasing the exocyclic group size to a ^-butyT group only reduced the 

number of turnovers per hour by 15%, whereas in isomerization the rate 

decreased by 60%. Secondly, addition of excess ligand to the 

hydrocyanation system brought about an increase in the amount of 

hydrocyanated product formed. This is opposite to what was observed in 

the isomerization of 3-butenenitrile, where addition of excess ligand 

brought about a decrease in the extent of catalysis. The probable 

explanation of this observation is that excess ligand limits the extent 

to which hydrogen cyanide complexes to the nickel atom, hence slowing 

down the rate of oxidation of the catalyst to catalytically inactive 

Ni(CN)2 species. 

Since Gultneh had found that these complexes were active catalysts 

for the hydrocyanation of olefins such as norbornene, allylbenzene, and 

1,5-octadiene, it seemed worthwhile to attempt to hydrocyanate 1,3-
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butadiene using the catalysts he found to be the most active, namely, 

Ni(^)4 and Ni(2)4. The reactions were carried out under the same 

conditions as used by Drinkard and Lindsey for the production of 

adiponitrile (46). The mixtures were analyzed for adiponitrile using 

capillary gas chromatography. As can be seen in Table 21, the yields of 

adiponitrile were quite low. The values which were obtained are even 

considerably lower than what was obtained in the hydrocyanation of the 

previously mentioned olefins. Analysis of the results suggest that 

Ni (^)4 in the presence of ZnCl2 and excess ligand produced the most 

active catalyst mixture. It also appeared that having a methyl group 

instead of an isopropyl group in the exocyclic position produced a more 

active catalyst. This result is opposite to what was observed by Gultneh 

for the olefins which he used. The precise reasons for the increased 

activity of the methyl complex is not yet known. However, it is possible 

that subtle differences in the steric properties of the ligands cause 

Ni (^)4 to be a more efficient catalyst for the hydrocyanation of 1,3-

butadiene. As seen in Table 21, the highest number of turnovers for the 

Ni(2)4 is observed when excess ligand is present. As previously stated, 

this is probably due to excess ligand preventing complexation of excess 

HCN to the Ni atom. We are currently unable to give a justification for 

the lower amount of turnovers observed for the 1/1/8 Ni (2)4/ZnGl2/2 

system as compared to the 1/1 Ni(2,)4/ZnCl2 system. Previous work (38) 

would have led to the expectation of a larger number of catalytic cycles 

for the former system. 
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Table 21. The preparation of adiponitrile from butadiene and HCN using 
various catalyst systems at 120°C in xylene 

Catalyst mixture mole of adiponitrile produced 
mole of Ni/2 hr (±1) 

Ni(^)4 4.0 

Ni(8_)4/ZnCl2/l: 1/1/17 13.6 

Ni (2)4 0.0 

Ni(2)4/ZnCl2: 1/1 - 6.7 

Ni(2)4/ZnCl2/l: 1/1/8 3.0 

Ni(2)4/ZnCl2/l: 1/1/15 5.4 
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It would appear that these catalysts, though good for the 

hydrocyanation of some olefins, are poor at converting 1,3-butadiene to 

adiponitrile. Attempts were made to carry out the reaction at 25°C in 

order to increase the residence time of the butadiene (bp = -4.4°C) and 

HCN (bp = 26°C) in the flask. However, experiments with Ni (2)4, ZnCl2 

and 2 in a ratio of 1/1/15 at 25° failed to produce any adiponitrile. It 

is possible that the reaction fails to proceed at this temperature and 

the residence time of the reagents may not even be a factor in the lack 

of activity. 

GC-MS analysis of the reaction mixture showed that besides 

adiponitrile being produced in these reactions, pentenenitrile and 

compounds of higher molecular weight than adiponitrile were also 

produced. The yields of these compounds were found to be approximately 

equal to that of adiponitrile. The identities of these higher molecular 

weight compounds are not known at this time. However, they are probably 

oligomers of either 1,3-butadiene or pentenenitrile since Tolman has 

shown previously that Ni(P(0R)3)4 complexes are efficient catalysts for 

the codimerization of olefins (136). No further work was done with this 

system due to the apparent lack of activity or selectivity for the 

production of adiponitrile. 

Heterogenized NiL^ catalysts 

As stated in the introduction of this chapter, the advantages in the 

use of heterogeneous catalysts are numerous. Based upon our knowledge of 

the NiL^ catalyst system, we sought to find ways to heterogenize these 
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catalysts. We were well aware of previous attempts to heterogenize 

homogeneous catalysts (66). Generally, these techniques involved 

substitution of a ligand in a homogeneous complex with a ligand bound to 

a polymer support. However, we decided to attempt a markedly different 

approach, that of directly incorporating the active metal center in a 

polymer framework. By doing this, it was hoped that it would be possible 

to prepare a catalyst which would function heterogeneously while at the 

same time providing easy access of the substrate to the catalytically 

active metal site. 

First, attempts were made to prepare metal complex polymers of the 

following type (Fig. 14): 

I I I I 

-(P---P)-M-(P-—-P)-M-(P—-P)-M-(P---P)-M-(P-—P)-

"O • "O T3 -o 
I I I I 
I I I I 
I I I I 
"O "O T3 -O 
I I I I 

-( P---.P ) -M- ( P~~~P) -M- ( P—P ) -M- (P---P) -M- ( P—P )-

(P—P) = nonchelating diphosphorus ligand 

Figure 14. Proposed structure of metal complex polymer 

In selecting a ligand which would link metal centers it was deemed 

necessary that the ligand: 1) not chelate the metal atom, and 2) mimic as 

closely as possible the structural and electronic properties of the 

ligand it replaced in the homogeneous NiL^ complex. Compound 23 was 

selected to be used as the linking ligand. A recent x-ray structural 

analysis had shown (41) that the phosphorus lone pairs were unable to 

chelate a metal atom due to the structural features of the molecule; at 

the same time its six member ring structure was similar to that shown to 
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be effective in our homogeneous reaction studies. Attempts to prepare a 

polymer of the type [Ni(23_)2]n were carried out via the following 

reactions. 

Ni(H20)g(BF4)2 + 6 CH3C(0Me)2CH3 > Ni(BF4)2 + 12 MeOH (48) 

+ 6 CH3C(0)CH3 

Ni(BF4)2 + 2.5 > [Ni(23)2.5](BF4)2 (49) 
acetone 

2[Ni(23)2.5]n(BF4)2 + ZWaHCO] > 2[Ni (^)2]n + 2NaBF4 + 0=(^)=0 

^ + 2HBF4 + ZCOg (50) 

Previously, work with nickel(II) phosphite complexes had shown them to be 

pentacoordinate (137). Since each molecule of ̂  contains two phosphorus 

atoms it was deemed necessary that a 2.5 to 1 ratio of ^to nickel ratio 

should be used. The product from reaction (47) was a bright yellow 

orange solid which was observed to be insoluble in all solvents including 

water. The powder was ground very finely and then added to an aqueous 

bicarbonate solution. Gas evolution was observed as had been observed in 

similar reactions of Ni(P(0R)3)5"^^ and KHCO3 (138). Upon stirring for 2 

hr under N2 the orange solid had turned white, indicative of a Ni(0) 

species. 

Attempts to reduce [Mi(^)2.5]n(GF4)2 with LiAlH4 and NaBH4 at room 

temperature proved to be unsuccessful as evidenced by the brownish-green 
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intractable solids produced in the reactions. However, reduction with 

NaBH4 at -78°C did prove to be successful in producing a white solid. 

The white solids which were obtained in these reactions were tried 

as catalysts in the isomerization of 3-butenenitrile. The solid was 

suspended in a benzene solution which contained the 3-butenenitrile. 

Upon addition of acid to the suspension, the solid turned yellow in 

color, indicative of protonation of the nickel. Subsequent analysis of 

the solution showed that the polymer was incapable of isomerizing the 

olefin. 

The inactivity of this catalyst was probably due to its inability to 

undergo ligand dissociation. As previously stated, the important step in 

the isomerization mechanism is the dissociation of a ligand from the 

HNiL^^ complex to form a coordinatively unsaturated HNiLg^ species. In 

this type of polymer, ligand dissociation is limited since most of the 

ligands are part of the polymer framework. In order to overcome this 

problem, a new type of polymer was designed (139). It was thought that 

by exchanging ligands between a NiL^ complex and a new type of 

polymer could be formed (Eq. 49). 

NiL^ + 
/O-y-

A n 

' 

p-^ 

0 

OMe 

P ) + 2L (51-) 

OMe 

0 

)Me OMe 
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The advantages of this type of catalyst over the previous polymer 

was that it contained monodentate phosphite ligands(L) which could now 

undergo dissociation upon protonation of the metal. The strand-like 

nature of this polymer might also allow for an increase in the 

availability of the metal atom to coordination of an olefin. Total 

utilization of all the nickel atoms in the other polymer would not be 

possible since most of the nickel atoms were buried deep within the 

polymer framework. 

Reaction (51) was found to proceed when L = ^, 7_, and PfOMe)^. 

Surprisingly, the reaction failed when L = _8. One of the main problems 

i n  cha rac te r i z i ng  t hese  ma te r i a l s  was  t he  comp le te  i nso lub i l i t y  i n  a l l  

organic solvents, which is indicative of their polymeric nature. This 

ruled out their analysis using most standard spectroscopic techniques. 

In order to determine the ratio of ^ to L in these types of polymers, a 

sample of [Ni(23)(P(OMe)i)?]p was subjected to ozonolysis for 2 hours. 

NMR showed that the only products obtained in this reaction were 

(MeO)(0)P(OCH2)2C(CH20)2P(0)(OMe) and (Me0)3P0 in a ratio of 1.1 to 1 

(based on phosphorus), which is slightly greater than the 1 to 1 ratio 

which would have been expected. A gravimetric nickel analysis was done 

to determine the percent of nickel in the polymer. [Ni(23)(P(0Me)-^)?]p 

was found to contain 9.4% nickel whereas 10.4% would be expected for a 

compound of that formulation. [Ni(23)(7)p3p analyzed slightly better 

with a value of 9.1% Mi as compared to an expected value of 9.5%. The 

polymers were all tried as catalysts in the isomerization of 3-

butenenitrile, and all were shown to function as catalysts. However, 
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there was a sharp decline in the activity of these compounds as opposed 

to their homogeneous analogues (Table 22). 

In order to prove that these catalysts operated heterogeneously, the 

following experiment was carried out. A freshly prepared sample of 

[Ni(23)(P(0Me)-^);?]p was divided in half. One half was used to make sure 

that the sample could isomerize 3-butenenitrile to cis/trans 2-butene-

nitrile. Once the activity of the sample had been established, the other 

half was used in an identical catalysis experiment. As soon as the 

complex started to isomerize the olefin (as shown by gas chromatography), 

the reaction mixture was filtered under a nitrogen atmosphere. The 

Table 22. The number of turnovers per unit time produced by various 
[Ni(23);?(L)g]p polymers versus their homogeneous NiL^ 
complexes for the isomerization of 3-butenenitrile® 

[Ni(^)(L)2]n NiL^b 

L Turnovers/time (± 10) Turnovers/time (± 10) 

P(0Me)3 120/18 hrs 74/30 min 

5 0 60/30 min 

7 72/24 hrs 92/30 min 

®3-Butene nitrile/acid/Ni = 124/10/1. 

bRef. (38). 
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yellow solid could be easily filtered out by glass wool placed at the end 

of pipette to yield a clear, colorless solution. Subsequent analysis of 

the solution revealed that the catalysis had stopped upon filtration of 

the catalysts. The reduced activity of these complexes as compared to 

their homogeneous counterparts is probably due in part to the following 

two factors: 

1. The different steric environment around the nickel atom in these 

polymers as compared to the homogeneous NiL^ complexes could have 

inhibited olefin coordination and isomerization. 

2. These polymers contain only two ligands that are completely free 

to dissociate ((23) is used to maintain the polymer framework) whereas 

there are four ligands which are free to dissociate in the corresponding 

NiL^ complex. Therefore, the polymer's ability to dissociate a ligand 

and provide -an open site for the coordination of olefin is reduced. 

Attempts were also made to polymerize Wilkinson's catalyst. Again, 

linking ligands were selected on their ability not to chelate the metal 

atom, and their similarity to the monodentate ligands they were to 

replace. Initial attempts to polymerize Rh{PPh3)3Cl via reaction (51) 

proved unsuccessful, as no polymeric materials were obtained. Attempts 

were then made to use ^as a linking ligand. This ligand was used in an 

attempt to provide more distance between the (RhClPPhg) units in the 

event that their size and proximity inhibited formation of a polymer. 

The reaction of a 1 to 1 mixture of_33 and Rh(PPh3)3Cl was carried out. 

The reaction yielded a small amount of solid which was close in 

appearance to Rh(PPh3)3Cl but yet did not exhibit any of the solubility 
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characteristics of the complex. An attempt was made to hydrogenate 1-

hexene using this material via the procedure of Osborn and co-workers 

(21). However, analysis of the catalysis mixture by gas chromatography 

showed that none of the hexene had been hydrogenated. 

Since it was known that PPhg was able to dissociate from Rh(PPh3)3Cl 

(22), whereas dissociation of PfOMe)^ from NifPfOMe)])^ was limited (19), 

it was felt that perhaps the linking ligand dissociated too quickly from 

the rhodium atom, thus inhibiting polymer formation. Therefore, (33) was 

prepared in the hope that it would bind more tightly to the rhodium atom 

and help ensure polymerization. However, attempts to prepare a polymer 

from this ligand and Rh(PPh3)3Cl were also unsuccessful. -• 

As stated in the introduction, many workers had been successful in 

finding ways of supporting transition metal complexés on functionalized 

resins in order to heterogenize homogeneous catalysts. Most of these 

preparations involved some sort of ligand exchange reaction between the 

complex and the support. Generally, this technique employed the use of 

complexes which were observed to undergo facile ligand exchange (i.e. 

Rh(PPh3)3Cl). However, in order to anchor appreciable amounts of a 

complex on the support it was necessary to stir a mixture of the complex 

and the resin in a solvent for up to three weeks (64). It was known that 

the NiL4 (L=P(0R)3) complex did not undergo appreciable rates of ligand 

exchange unless acid was added (38). The use of an acid catalyst to 

speed up the rate of ligand exchange between a NiL^ complex and a 

functionalized support was ruled out, since it was felt that the acid 

would oxidize most of the complex before it would have a chance to be 
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anchored to the support. It did seem reasonable to suppose, however, 

t ha t  a  N iL^  comp lex  cou ld  be  suppo r ted  on  a  ca t i on  exchange  r es i n  v i a  

reaction (Eq. 52). In this case the resin would actually act as the acid 

(52) 

SO "HNiL 
+ 

which would protonate the complex. At the same time the complex would be 

anchored on the resin and therefore would act as a heterogeneous 

catalyst. 

In order to maximize diffusion of the NiL^ complex into the resin, 

it was decided that macroreticular resins, which are known to have large 

porosities would be used. Amberlyst IR-15 and XN-1010 were two such 

resins which have porosities of 32% and 47%, respectively (140). 

However, the XN-1010 resins had a larger surface area of 540 sq.m/gm. as 

compared to the 45 sq.m/gm of IR-15 (140). It was thought that the high 

porosity and surface areas would help diffusion of the NiL^ complex and 

substrate into the resin. 

The catalyst was prepared by stirring the beads in a toluene 

solution containing a two fold excess of NiL^ complex based upon the 

amount of in the resin, for approximately 12 hrs. Analysis of the 

resin indicated that additional hours of stirring failed to significantly 
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increase the amount of nickel in the bead. 

At first, the IR-15 resin was used to investigate the activity of 

these types of catalysts. The catalyst was prepared as described, and 

after stirring, the excess NiL^ complex was removed. This was 

accomplished by washing the resin under nitrogen with 4 to 5 portions of 

toluene with each portion being equal in volume to the original amount of 

toluene used. Proof of heterogeneity of the catalyst was provided by the 

same experiment that had been used with the polymer catalyst. When a 

sample was proved active, the catalyst was removed and the catalytic 

isomerization was observed to have stopped. 

In order to determine the amount of nickel present in the resin, the 

resins were digested in a HNOg/HClO^ solution. Due to the low 

concentration of nickel contained in the resin (at most 3.3 mmole/gram 

resin), the exact amount of nickel present was determined 

spectrophotometrically. The nickel was complexed using 4-(2-pyridylazo) 

resorcinol and its concentration was established by measurement of the 

visible adsorption at 494 nm (107). Each time a new portion of catalyst 

was prepared, it was analyzed for its nickel content. Table 23 shows the 

numbers of H"*" cations per nickel atom found. As can be seen for the 

acyclic phosphites, the larger the ligands, the smaller the amount of 

complex which was observed to be contained in the resin. The three 

cyclic compounds were observed in ratios that fell in a small range, with 

Ni (^)4 appearing to have the highest concentration of nickel in the 

resin. 



www.manaraa.com

151 

Table 23. Amount of H^Vnickel found in NiL^/XN-lOlO resin catalysts® 

Ligand L Moles H*/Moles Ni (±0.5) 

P(0Me)3 5.5 

P(0Et) 3  6.6 

P(0iPr)3 8.7 

(7} 6.0 

(^) 4.6 

(5^ 7.1 

^3.3 Meq. H^Ygm of resin. 

These resins were used as catalysts in the isomerization of 3-

butenenitrile under the same conditions as was used in the homogeneous 

catalyses with the exception that no acid was added. As can be seen in 

Table 24, in all cases the heterogeneous catalysts were much less 

efficient than their homogeneous analogues. The reasons for this 

reduction in rate could lie in any of the following reasons. 

Gultneh had found that the highest rates of catalysis were obtained 

at a 10 to 1 acid to.nickel ratio. This allowed for the complete 

protonation of the NiL^ as shown in Equation 53. Within the resin, this 

-NiL4 + H+ > HNiL4+ (53) 



www.manaraa.com

152 

Table 24. Number of turnovers/unit time of supported NiL^ complexes 
versus their homogeneous analogue for the isomerization of 3 
butenenitrile 

^ Turnovers per unit time for isomerization of 3-butenenitrile (+5) 

Supported catalysts Homogeneous catalyst 

P(0Me)3 0 74/30 min 

P(0Et) 3  130/24 hrs 52/30 min 

P{0iPr)3 0 35/30 min 

ID 128/12 hr 92/30 min 

(8) 132/12 hr 640/30 min 

m 0 124 cycles/23 min 

high ratio could not be achieved since addition of excess acid would have 

led to the formation of HNiL^* species in solution which could then 

diffuse out of the resin resulting in homogeneous catalysts. 

Secondly, the environment around the NiL^ complex may not have been 

conducive to olefin coordination. Since sulfonic acid groups are 

attached to styrene groups, it is possible that the phenyl rings of the 

styrene group impede coordination of the olefin to the metal upon ligand 

dissociation. 

Thirdly, the diffusion of a polar olefin such as 3-butenenitrile 

into the bead may have been limited due to the lack of polar gradients 

which develop between the resin (which is largely aromatic due to its 

styrene makeup) and the aromatic solvent (toluene) used (66). 

Hence, due to the reduced activity of these catalysts as compared to 

their homogeneous counterparts, no further work was deemed warranted. 
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PART II: 

STEREOELECTRONIC EFFECTS OF CYCLIZATION IN 

AMINOPHOSPHINE SYSTEMS: A STRUCTURAL, 

PES, AND NMR STUDY OF Me2NP(0CH2)2CMe2 

AND CH2(CH2CH2)2NP(0CH2)2CMe2 
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INTRODUCTION 

The chemistry of phosphorinanes has been an area of great interest 

over the past several years (141,142). Much work has been done to 

elucidate their structures in both the solid and solution phases. The 

results of previous work have shown that in all cases phosphorinanes 

adopt a chair conformation. However, this conformation has been found to 

be slightly modified from that found in cyclohexane (142). In most 

compounds, the phosphorinane ring has been observed to be slightly 

flattened at the phosphorus end. This flattening has been attributed to 

steric interactions which develop between the exocyclic groups on 

phosphorus and the rest of the phosphorinane ring. Studies have also 

shown that the exocyclic groups on phosphorus can adopt either the axial 

or equatorial positions with respect to the ring. Quin and co-workers 

have prepared many 2-alkyl-(aryl) phosphorinanes (143) and have studied 

their conformational equilibria (Eq. 27) using NMR techniques (60). 

They have found that at lower temperatures (130-150 K) the conformer with 

an equatorial exocyclic group is slightly favored (Kg/g = 2.03 (CH3), 

2.10 (C2H5), 2.33 (C5H5)). The axial conformation is thought to be 

destabilized by interactions between the exocyclic group and the axial 

R 
(27) 



www.manaraa.com

155 

4,6 protons. It was also observed that the entropy change was 

significant for Equation 52 (AS= -3.4 eu (CH3), -3.2 eu (C2H5), -2.5 eu 

(CgHg)), while the AH was low (-0.68 kcal/mol for R = CH3) (60). As a 

consequence, upon heating solutions of these compounds to 300 K the 

equilibrium was found to shift toward the axial conformer (Kg/g = 0.56 

(CH3), 0.65 (C2H5), 0.72 (C2H5)) (60). 

Over the past ten years our group has focused particular attention 

upon the 2-alkoxy~l,3,2-dioxaphosphinanes system (24). Unlike the 

previously mentioned phosphine analogues, we have found that these 

compounds overwhelmingly adopt the conformation with an axial R group 

(24). This would seem to suggest that steric factors are less important 

than electronic factors in determining the conformation of the ring. 

Hudson and Verkadè (144) have shown that when the lone pair on phosphorus 

is in the axial position with respect to the ring, there arises an 

interaction between it and a lone-pair contained in a p orbital on a ring 

oxygen. As a result, the conformation with an axial OR group and an 

equatorial lone-pair is preferred. Mosbo (58) found that when the -OR 

group was replaced with an NR2 group, the conformation with an axial 

lone-pair and an equatorial NRg group was preferred. The factor which 

stabilizes this conformation is the steric interaction which develops 

between a nitrogen methyl group and the axial 4,6 hydrogens of the ring 

which are present within conformation a and not in b (Fig. 15). The 

dimethyl amino group is forced to adopt the orientation as shown with 

respect to the ring due to the repulsion of the lone-pair on phosphorus 

and the N-P IT MO (145). 
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N 

/ 

Me 

Figure 15. Orientation of electron lone pairs 
in each of the two possible conformations 
of 2-dimethylamino-l,3,2-dioxaphosphorinane 
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In the past, there has been much interest in the structural and 

electronic properties of aminophosphorus compounds, in particular 

P(NMe2)3 (27). However, much of the solid state structural information 

which is known about 2-amino-l,3,2-dioxaphosphorinanes is inferred from 

analogous compounds in which the phosphorus is pentavalent. In fact, 

proof of the preference of the Me2N group to be equatorial originally 

came from dipole moment studies of the corresponding 2-amino-l-oxo-l,3,2-

dioxaphosphorinanes (58). Since and ^ were trivalent and solids at 

ambient temperatures, an opportunity was provided to compare their 

structural and conformational preferences to their pentavalent analogues 

via the use of X-ray diffraction. We also sought to investigate the 

electronic properties of these cyclic compounds and compare them to their 

acyclic analogues using photoelectron spectroscopy and the Jp_se coupling 

data of their corresponding selenides. It was hoped that their 

electronic properties could be rationalized using information obtained in 

the X-ray structural analysis. 

In this chapter, we will report that compoundsand 21 prefer the 

same conformation in the solid, solution and gaseous states, that the 

nitrogens are nearly planar in the solid state, and that 20 and 21 are 

less basic than their acyclic analogue (Me2N)P(0Me)2 in the gas and 

solution states. 

Experimental procedures 

All solvents and other materials were of reagent grade or better. 

Diethyl ether was dried by refluxing over NaK alloy. Acetonitrile was 
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dried over P4O1Q, benzene was dried by refluxing over Na metal. 

Trimethyl phosphite and dimethyl ami ne were obtained from Eastman Kodak 

Company. Piperdine was obtained from Fisher Chemical Company, while 2,2-

dimethyl-1,3-propanedio1 was obtained from the Alrich Chemical Company. 

All the above reagents were used as received with no further 

purification. 

All NMR spectra were obtained on deuterated chloroform solutions 

contained in 5 mm tubes. Chemical shifts were obtained relative to the 

internal standard tetramethylsilane. All NMR spectra were obtained 

using a Varian EM-360. NMR spectrometer. All NMR spectra were 

obtained on either CgDg or CDgCfOjCDg solutions contained in 10 mm 

tubes. The spectra were obtained on a Bruker WM-300 NMR spectrometer 

operating in the FT mode at 121.5 MHz. The external standard was a 

sealed capillary tube containing 85% H3PO4. The capillary was held 

coaxially in the tube by means of a Teflon vortex plug. The spectrometer 

operated using a lock provided<by the deuterium atoms contained in the 

solvent. 

All ^^C NMR spectra were obtained using a Jeol FX-90Q spectrometer 

operating at 22.5 MHz in the FT mode, while locked on the deutrium atoms 

contained in the solvent C03C(0)CD3/CF2Cl2. The spectra were obtained 

using the carbon atoms of the solvent as a reference. All mass spectral 

data were obtained using a Finnegan 4000 mass spectrometer. All melting 

point data were collected on a Thomas-Hoover Unimelt apparatus. Melting 

points were obtained uncorrected. PES data were recorded as described 

earlier (27). 
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Preparations 

2-g-Chloro-4,6-o,a-dimethyl-l,3,2-dioxaphosphorinane (£) The 

preparation of this compound can be found in chapter one of this thesis. 

Dimethylphosphochiorodite (40) This compound was prepared via 

the procedure of Ramirez and co-workers (146). 

Dimethyl dimethylphosphoramidite (41) Attempts to prepare this 

compound via the reaction of 1 equivalent of tris(dimethyl 

amino)phosphine and two equivalents of methanol in the presence of a 

catalytic amount of dimethyl ami ne hydrochloride via the method of 

Bentrude and co-workers (147) were unsuccessful. The compound was 

successfully prepared via the reaction of and dimethyl amine in a 

manner similar to a procedure described previously (128). The compound 

was obtained in 73% yield via distillation (b/^2 = 42-45°, lit. b/^g = 50-

51° (147); NMR (CDCI3) 3.4d Jp.^ = 12 Hz 6H OCH3, 2.6d Jp=H = 9 Hz 6H 

-N(CH3)2, lit. (147) 3.3d Jp.^ = 12 Hz 6H OCH3, 2.6d Jp.^ = 9 Hz 6H 

N(CH3)2). 

2-Dimethylamino-5,5-dimethyl-l,3,2-dioxaphosphorinane (^) This 

compound's preparation is described in Chapter One of this thesis. 

2-Piperdino-6,5-dimethyl-1,3,2-dioxaphosphorinane (21) This 

compound's preparation is described in Chapter One of this thesis. 

2-g-Dimethyl amino-4,6-a,«-dimethyl-1,3,2-dioxaphosphorinane (42), 

2-ordimethylamino-4,6-a,a-dimethyl-l,3,2-dioxaphosphorinane (4^) 
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Mixtures of these compounds were first prepared via two procedures 

described by Mosbo (58). The first procedure entailed the reaction of _4 

and dimethyl ami ne, while the second used the reaction of meso-2,4-

pentanediol and tris (dimethyl ami no) phosphine. In both procedures, 

Mosbo reports a conformational ratio of 9 to 1 for 43 and 42, 

respectively. However, upon repeating this work it was found that the 

first procedure produced a 2 to 1 mixture ofand_4^, while the second 

procedure yielded a 4 to 1 mixture of and 4^ Heating a neat mixture 

of 43 and_^ for 3 hr. under Ng at 130°C failed to affect any change in 

the conformational distribution obtained in either reaction, A 4 to 1 

mixture of to_^ could be obtained from a 2 to 1 starting mixture .by 

heating 0.5 g of the neat 2 to 1 mixture with 5 mg of para-

toluenesulfonic acid at 90°C for 3 hr. Determination of the isomeric 

distribution was made by integration of each set of dimethyl ami no 

resonances in the ^H NMR spectrum. The compounds were obtained as a 

mixture of isomers in 81% yield by distillation. No attempts were made 

to separate the isomers (bg = 46°, lit. b2 = 44-46° (58); ((43) NMR 

(CgOg) 141.4, lit. 141.0 (58), ^H NMR (CDCI3) 4.3-3.7m 2H CH, 2.5d Jp.^ = 

9 Hz, 6H N(CH3)2, l.ld J^-H = 6 Hz, 6H CH3, 1.0m 2H CH2; (42) ^Ip NMR 

(CgDg) 137.6, lit. 137 (58); ^H NMR (CDCI3) 4.3-3.7m 2H CH, 2.3d Jp.^ = 8 

Hz 6H N(CH3)2, l.ld J^.H = 6 Hz 6H CH3, 1.0m 2H CH2). 

KSeCN This compound was prepared via the procedure of Waitkins 

and Shutt (87). 
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Dimethyl dimethyl selenophosphoramidate (44) This compound was 

prepared by reacting 0.55 g (0.0039 mole) KSeCN and 0.53 of_41_ in 25 ml 

of acetonitrile. The mixture was stirred for 3 hr. at room temperature 

and filtered. The compound was obtained in 94% yield upon removal of the 

acetonitrile using a rotary evaporator. No further purification was 

necessary as evidenced by NMR (^^P NMR (0030(0)003) 87.Id Jp_se = 903 

Hz). 

2-Dimethylamino-2-seleno-5,5-dimethyl-l,3,2-dioxaphosphorinane (45) 

This compound was prepared by the reaction of 0.81 g (0.0056 mole) of 

KSeCN and 0.83 g (0.0055 mole) of ^ in 20 ml of acetonitrile. The 

solution was stirred for 4 hrs, then filtered, and the acetonitrile was 

removed under vacuum to yield a white solid. The product was obtained in 

86% yield via sublimation at 85°/1.5 Torn (^^P NMR (0030(^)003) 79.2d 

^P-Se =914 Hz). 

2-Piperdino-2-seleno-5,5-dimethyl-l,3,2-dioxaphosphorinane (46) 

This compound was kindly provided by Dr. Steven Socol. 

2-a-Dimethylamino-2-0-seleno-4,6-a,a-dimethyl-l,3,2-dioxaphorinane 

(47), 2-g-Dimethyl amino-2- a -seleno-4,6- a , a -dimethyl-1,3,2-dimethyl-

1,3,2-dioxaphosphorinane (48) This compound was prepared via the 

reactions of a 4 to 1 mixture of andand KSeCN via the procedure 

described for 4^ The resulting liquid which was obtained in 81% yield 

was used without further purification ((47)^^P NMR (CD3C(0)CH3) 75.Id 

Jp_Se = 895 Hz; (4^ ^^P NMR (003(0(0)003) 77.6d Jp.jg = 924 Hz). 
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Experimental details for X-ray data collection for compounds 20 and 21 

Crystals of both_20 and^ suitable for x-ray diffraction were grown 

by separately sealing approximately 0.5 g of the purified compound in an 

evacuated (~0.1 Torr) 10 cm long 1/4" ID glass tube. The bottom of the 

tube was placed in a sand bath and slowly heated. Compounds 20 and 21 

sublimed at 27° and 60°, respectively. Due to the low melting point of 

compound_20_ (28°C), it was necessary to select and mount crystals in a 

cold room which was maintained at 14°C. A colorless crystal of ^in the 

shape of a paralelepiped (0.3 x 0.4 x 0.2 m) was mounted in a 0.5 mm I.D. 

Lindemann capillary. The capillary was sealed to prevent hydrolysis by 

atmospheric moisture. The crystal was found to be triclinic with a = 

6.542(1)A, b = 11.731(3)Â, c = 6.440(2)A, a= 101.53(4), g = 83.52(3) and 

Y = 90.96(3)A. A density of 1.22 g/cm^ was computed on a volume of 

481.1(2)A^. A Howells, Phillip, and Rodgers' plot (148) indicated a 

cèntrosymmetric lattice which led unambiguously to the space group 

which was later confirmed by subsequent solution and refinement of the 

structure. The data were collected at -130 + 3° on a Syntex 

diffTactometer with graphite monochromated MoK^ radiation (X = 0.70954 A) 

employing a previously described procedure (149). Low-temperature data 

were collected in order to minimize thermal motions. Four octants were 

collected within the sphere of 20 < 50° yielding 2645 measured 

intensities. 'There was no significant crystal decomposition as judged by 

repeated measurements of three standard reflections. Averaging of 

e q u i v a l e n t  d a t a  y i e l d e d  1 2 7 0  o b s e r v e d  r e f l e c t i o n s  ( F q  >  3 a  ( F q ) ) .  
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Lattice constants were obtained by a least squares refinement of the +20 

(|2e| > 20°) measurements of 24 standard reflections. 

The structure was solved by standard heavy atom procedures following 

location of the phosphorus atom from interpretation of the Patterson 

maps. Refinement of the structure was carried out using block matrix 

least-squares methods. Fourier-difference maps and least squares 

refinements led to location of the positions of all nonhydrogen atoms. 

Isotropic refinements of these positons gave a conventional R factor of 

0.19 and a weighted R factor of 0.265. Anisotropic refinement of these 

positions gave a conventional R factor of 0.114 and a weighted R factor 

of 0.172. Ring hydrogen positions were calculated and a final full 

matrix least-squares refinement of all atoms led to a final conventional 

R of 0.074 and weighted R of 0.121. 

The structure of compound_2^ was determined using the same methods 

as used on compound_20. Initial attempts at solving the structure of 

compounds at -130°C were unsuccessful due to computational problems which 

arose from apparent pseudosymmetry in both the nitrogen and phosphorus 

rings. Re-collection of the data at 21°C ± 3° seemed to allow for more 

thermal movement in both rings which eliminated the pseudosymmetry. 

The pyramidal shaped crystal (0.4 x 0.2 x 0.2 mm) was found to be 

orthorombic with a = 8.464(1)A, b = 9.868(2)A, c = 27,832(2)A> Z = 8, 

volume = 2323.9(6)A^ and p = 1.24 g/cm"^ (calculated). Systematic 

absences OkO k = 2n; hOl for h + 1 = 2n; Okl, k = 2n; hkO for h=2, and 

001 for 1 = 2n indicated the space group which was later confirmed 

by solution of the structure. 
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Data were collected on a four circle diffractometer designed and 

built in the Ames Laboratory, equipped with a scintillation counter and 

interfaced to a PDP-15 computer. The data were collected with graphite 

monochromated MoK^ radiation with 1465 reflections in 2 octants being 

observed within a sphere of 20 < 50°C. 

There was no observed decomposition of the crystal based upon 

repeated observation of three standard reflections. Averaging of 

equivalent data yielded 560 independent reflections (Fq > 3a (FQ))* 

Block matrix least square isotropic refinement of the nonhydrogen 

positions yielded a conventional R of 0.103 and a weighted R of 0.141. 

Hydrogen positions were calculated and a final full matrix anisotropic 

refinement of the nonhydrogen positions led to a final conventional R of 

0.084 and a weighted R of 0.117. 

Results and discussion 

Tables 25 and 26 list the bond angles and bond distances for 

compounds ^and respectively. Tables 27 and 28 list their 

respective fractional coordinates, while Tables 29 and 30 give their 

respective anisotropic thermal parameters. The structure factors for ^ 

and_^ can be found in Appendices 3 and 4 of this thesis. 

ORTEP drawings of ^ and ^ may be found in Figs. 16 and 17. Unit 

cell drawings of these compounds are shown in Figs. 18 and 19. As can be 

seen, each of the compounds adopts the chair conformation with the amino 

group in the equatorial position with respect to the ring. Previous 

structural investigations of other 2-amino-2-oxo-l,3,2-dioxaphosphorinane 
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Table 25. Bond distances (A) ,  angles (°), and their standard deviations 
for Me2NP(0CH2)2CMe2 (20) 

Bond distance Bond angle 

P-01 1.640(4) N-P-01 99.23(22) 

P-02 1.652(4) N-P-02 101.50(22) 

P-N 1.642(5) Ol-P-02 97.73(20) 

01-C3 1.452(7) • C1-N-C2 115.12(49) 

02-C4 1.453(7) Cl-N-P 125.30(45) 

N-Cl 1.447(7) C2-N-P 119.58(37) 

N-C2 1.469(9) P-01-C3 114.75(24) • 

C3-C5 1.525(7) P-02-C4 112.32(29) 

C4-C5 1.532(8) 01-C3-C5 111.80(38) 

C5-C6 1.549(9) 02-C4-C5 109.92(34) 

C5-C7 1.547(7) C3-C5-C4 108.80(30) 

C3-C5-C6 108.08(40) 

C3-C5-C7 111.83(36) 

C4-C5-C6 108.11(37) 

C4-C5-C7 109.99(35) 

C6-C5-C7 110.63(35) 
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Table 26. Bond distances (A), angles {°) and their standard deviations 
for CH2(CH2CH2)2NP(0CH2)2CMe2 {n) 

Bond distance Bond angles 

P-01 1.675(16) Ol-P-02 97.39(79) 

P-02 1.623(18) N-P-01 100.61(93) 

P-N 1.637(12) N-P-02 100.18(90) 

01-C3 1.461(32) Cl-N-P 120.88(95) 

02-C4 1.426(33) C2-N-P 124.33(106) 

N-Cl • 1.505(22) C1-N-C2 114.25(118) 

N-C2 1.502(21) P-01-C3 115.87(140) 

C3-C5 . 1.515(44) P-02-C4 114.77(137) 

C4-C5 1.556(43) 01-C3-C5 112.18(188) 

C5-C6 1.53(21) 02-C4-C5 112.76(186) 

C5-C7 1.556(20) C3-C5-C6 110.61(222) 

C1-C3N 1.582(28) C3-C5-C7 109.65(228) 

C2-C4N 1.521(30) C4-C5-C6 110.00(238) 

C3N-C5N 1.501(26) C4-C5-C7 111.82(74) 

C4N-C5N 1.632(27) C6-C5-C7 107.53(119) 

N-C7-C3N 108.04(161) 

C1-C3N-C5N 112.22(151) 

C3N-C5N-C4N 106.27(143) 

C5N-C4N-C2 110.13(153) 

C4N-C2-N 109.55(173) 
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Table 27. Final positional parameters and their standard deviations for 
Me2NP(0CH2)2CMe2 (20)^ 

X y z 

P 0.0848(2) 0.2816(1) -0.0080(2) 

01 0.1347(5) 0.2862(3) 0.7382(6) 

02 0.8443(5) 0.2385(3) 0.9884(6) 

N 0.2044(7) 0.1593(4) 0.9917(8) 

CI 0.2081(10) 0.0559(5) 0.8250(11) 

C2 0.3179(9) 0.1496(6) 0.1718(11) 

C3 0.0011(8) 0.3625(4) 0.6617(8) 

C4 0.7134(8) 0.3200(5) . 0.9214(9) 

C5 0.7770(7) 0.3247(4) 0.6869(8) 

C6 0.6428(9) 0.4184(5) 0.6277(10) 

C7 0.7458(9) 0.2044(5) 0.5442(9) 

HIA -0.0889 0.4281 0.7654 

HIB -0.0681 0.3363 0.5204 

H2A 0.7278 0.4031 1.0200 

H2B 0.5597 0.2929 0.9398 

^Fractional coordinates of unit cell. 
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Table 28. Final positional parameters and their standard deviations for 
CH2(CH2CH2)2NP(0CH2)2CMe2 (21)^ 

X y y 

p 0.7472(10) 0.1762(3) 0.0892(1) 

01 0.5972(15) 0.2863(15) 0.0932(4) 

02 0.8897(10) 0.2834(15) 0.0997(3) 

N 0.7355(27) 0.1019(13) 0.1417(4) 

CI 0.7189(31) 0.9509(17) 0.1458(5) 

C2 0.7156(28) 0.1738(18) 0.1884(6) 

C3 0.6058(29) 0.4026(27) 0.0615(7) 

C4 0.8967(27) 0.3957(27) 0.0670(8) 

C5 0.7503(40) 0.4895(14) 0.0710(5) 

C6 0.7641(39) 0.6043(16) 0.0338(5) 

C7 0.7385(29) 0.5567(15) 0.1214(5) 

C3N 0.8435(21) 0.8985(21) 0.1838(6) 

C4N 0.8394(24) 0.1263(20) 0.2240(6) 

C5N 0.8203(20) 0.9624(18) 0.2322(6) 

H3A 0.4962 0.4596 0.0656 

H3B 0.5996 0.3654 0.0244 

H4A 0.9970 0.4601 0.0761 . 

H4B 0.9108 0.3650 0.0371 

HIA 0.6171 1.000 0.1581 

H IB 0.7611 1.000 0.1148 

H2A 0.7281 0.2795 0.1839 

H2B 0.5995 0.1561 0.2028 

K3NA 0.9593 0.9221 0.1710 

H3NB 0.8330 0.7946 0.1875 

H4NA 0.8006 0.0688 0.2557 

H4NB 0.9410 0.0744 0.2155 

H5NA 0.7123 1.019 0.2397 

H5NB 0.9126 1.200 0.2489 

^Fractional coordinates of unit cell. 
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Table 29. Final thermal parameters and their standard deviations (in 
parentheses)^ for Me2NP(0CH2)2CMe2 (^) 

Bll B22 B33 Bi2  ^13 ^23 

p 2.4(1) 2.5(1) 2.9(1) 0.3(4) -0.8(4) 0.3(1) 

01 2.4(1) 3.1(2) 3.6(2) 0.3(1) -0.1(1) 1.0(1) 

02 2.4(2) 4.3(2) 3.4(2)  0.2(2) -0.4(1) 1.9(1) 

N 3.1(2) 3.3(2)  4.0(2) 0.5(2) -1.2(2) 0.7(2) 

CI 4.3(3) 2.6(2) 5.0(3) 0.5(2) -0.7(2) -0.1(2) 

C2 3.6(3) 5.3(3) 5.0(3) 0.7(2) -1.8(2) 2.3(2) 

C3 3.0(2) 2.8(2) 3.3(2) 0.1(2) -0.6(2) 1.1(2) 

C4 2.1(2) 4.4(3) 3.4(3) 0.8(2) 0.0(2) 1.6(2) 

C5 2.2(2) 2.9(2) 2.9(2) -0.1(2) -0.7(2) 1.1(2) 

C6 3.4(3) 4.2(3) 5.3(3) 0.3(2) 1.1(2) 2.3(3) 

C7 4.8(3) 3.6(3) 4.0(3) -1.2(2) -2.0(2) 0.6(2) 

^The form of the anisotropic thermal parameter is exp[(-B]^2a*^h^ + 

B22b*^k2 + B33C*^I2)/4 + (B22a*b*hk + Bi3a*c*hl + B23b*c*kl )/2]. 
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Table 30. Final thermal parameters and their standard deviations (in 
parentheses)^ for CH2(CH2CH2)2NP(0CH2)2CMe2 (21.) 

Bii ^22 B33 Bi2 BI3 ^23 

p 4.2(2) 2.6(1) 2.5(1) -0.3(4) 0.5(6) -0.1(1) 

01 1.6(7) 2.8(8) 3.9(6) 0.4(6) -0.1(6) 0.4(7) 

02 3.2(8) 3.8(9) 3.0(7) 0.3(7) -0.2(6) -0.3(6) 

N 5.7(9) 3.1(6) 3.1(5) 0.6(13) -0.3(10) -0.3(4) 

C3 7.5(16) 1.7(15) 2.0(8) -1.2(18) 1.0(11) -0.2(10) 

C4 1.7(15) 6.5(15) 3.6(10) -1.6(18) -0.3(11) 1.0(12) 

C5 2.5(9) 2.4(6) 3.8(6) -1.4(22) -1.9(14) -0.2(5) 

C6 3.7(10) 3.4(7) 4.3(7) 2.1(16) 1.6(13) 1.4(6) 

C7 3.0(9) 3.0(7) 3.9(7) -0.2(15) 1.0(13) -0.1(6) 

CI 5.8(16) 3.9(8) 2.2(6) 0.9(11) -0.1(8) 0.5(6) 

C2 9.7(18) 3.2(7) 4.0(7) 2.0(12) 1.6(11) 0.2(8) 

C3N 4.5(11) 3.2(8) 5.0(10) 1.0(10) -1.0(8) -0.2(8) 

C4N 7.7(15) 3.5(9) 2.6(7) 0.1(10) 0.4(8) 0.3(7) 

CBN 3.3(11) 3.2(9) 4.9(9) -0.0(7) 1.3(7) -1.3(7) 

®The form of the anisotropic thermal parameter is exp[(-B22a*^h^ + 

^22^*^^^ + ^33^*^^^)/4 •*" (^12^*^*^^ ^ B]^3a*c*hl + B23b*c*kl )/2] • 

investigation indicates for the first time that this preference persists 

when phosphorus is trivalent. Each of the compounds contains nitrogens 

which are planar. This is illustrated by the sum of the angles around 

nitrogen being equal to 360.0° and 359.5° for 20 and 21, respectively. 
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Figure 16. ORTEP diagram of 20 
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Figure 18. Unit cell diagram of 20 
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The nitrogen is rehybridized from sp^ to sp^ as illustrated by its 

planarity and the short N-P bond distance of 1.642(5)A and 1.637(12) A in 

20 and 21, respectively. These distances clearly indicated the presence 

of some multiple bonding between nitrogen and phosphorus. Previous 

workers have accepted a nitrogen-phosphorus single bond to be 1.769 A 

long (as is found in NaCHgNPOg] (151)), while a nitrogen-phosphorus 

double bond is accepted to be 1.52 A long (as is found in [NPCl2]5 

(152)). The source of this multiple bonding between nitrogen and 

phosphorus stems from the presence of electronegative substituents on 

phosphorus such as oxygen in_20, _2]^, and ̂  (153) or halogens in RgNPXg 

(154). These electronegative groups cause a buildup in positive charge 

on phosphorus which in turn causes an increased interaction to develop 

between the lone-pair on nitrogen and an empty d-orbital on phosphorus, 

resulting in multiple bonding between the atoms. Recent X-ray structural 

studies of SeP[N(CH2CH2)CH2]3 (155) and PCN(CH2CH2)CH2]3 (156) shows that 

each compound contains only 2 planar nitrogens while the other is 

tetrahedral. It is probable that in these cases all three nitrogens 

render the phosphorus insufficiently electronegative to maintain the 

planarity of all three nitrogens. This has also been observed by Socol 

and Verkade (157) in the solid state structure of Ag(P(NMe)3)2^ BPh^". 

It was found that only two of the nitrogens on each phosphorus were 

planar while the third was tetrahedral. Si nee ̂  and each contain two 

oxygen atoms, phosphorus is rendered sufficiently electronegative to 

preserve the planarity of the nitrogen. It appears that the tendency 

toward planarity of the nitrogen is strong enough to overcome the 
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puckering tendency of the pi peri dine ring in compoundThis is also 

true in P{N(CH2CH2)2CH2)3 (156) and SeP[N(CH2CH2)2CH2]3 (155). This has 

also been observed in the corresponding morpholino compounds 

SeP[N(CH2CH2)20]3 and P[N(CH2CH2)20]3. (155). The piperidine ring in ̂  

is able to accommodate the planar nitrogen by increasing the C2-N-C2 bond 

angle to 114° and by flattening the CJ-N-C2 plane with respect to the Cl-

C3N-C4N-C2 plane. The acute angle between both planes is 53° as opposed 

to the 60° angle found in the cyclohexane chair conformation. The 

reasons for the long C4N-C5N distance (1.632 A) in the piperidine ring 

are not known at this time, since the anisotropic thermal parameters for 

these atoms are not unusual nor are there any close intermolecular 

contacts within the unit cell. 

Typical of R2NPX2 (154,158,159) and R2NP(0)X2 (Xg = OCCCO or OCCCNR) 

ring systems (153) is the tendency of the C2NP plane to be nearly 

perpendicular to that of the bisector of the PX2 angle. This 

conformational property is also seen in ̂  and 21» wherein the C2N planes 

are rotated from perpendicularity to the PO2 plane by 2.2° and 1.9°, 

respectively. This observation is consistent with the notion that the 

nitrogen and phosphorus lone-pairs avoid repulsion and the nitrogen lone-

pair enhances its opportunity to pi bond with phosphorus by adopting the 

observed conformation. Rotation of the P-N bonds in these compounds is 

apparently facile since the NMR of shows no perceptible change 

down to -84° in (CD3)2C0/CF2C12» 

The P-N bonds in _20 and ̂  (1.642(5) and 1.637(1)A, respectively) 

are typical of those observed for several P(III)-N compounds (160), a 
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result which is consistent with the presence of pi bonding in the P-N 

bond. Further evidence for enhanced P-N pi bonding in and _21_can be 

construed to emanate from their P-O-C angles which average 113.5 and 

115.3°, respectively. These angles are distinctly smaller than the POC 

angles in the rings ofwhich average 119.9° (41). This is consistent 

with the idea that the hybridization around the oxygens in 20 and 21 is 

closer to sp^ whereas in ̂  it is nearer to sp^. The exocyclic POC angle 

in 2Z_ (117.80°) is also larger than the POC angles in ̂ and ̂  (41). 

These results are consistent with the idea that the R2N substituent is 

more capable of N-P pi bonding than a methoxy group. This postulate is 

also supported by the slightly longer average P-0 bond distances in 20 

and ^ (1.646(4) and 1.649(4), respectively) compared with 23 

(1.617(5)A). A consequence of the larger POC angle in ̂  is that the 

esteratic portion of each chair is more flattened than in _20 and 21. 

Thus, the acute angle between the planes made by the Ol-P-02 and 01-02-

C3-C4 portions of the ring in_l and_2 is 74.1° and 76.5°, respectively. 

This compares with the corresponding angle of 36.9° in ̂  The sum of 

the angles around phosphorus in P(III) compounds generally falls in the 

range 295-300° (155). The corresponding sums in and ^ are not unusual 

in this respect (298.5° and 298.8°, respectively). 

In order to determine the electronic properties of ^and 21, a UV 

photoelectron study of these compounds was carried out in collaboration 

with Cowley and co-workers. The He(I) UV-PE spectra of these compounds 

can be found in figures 20 and 21. Table 30 shows the possible band 

assignments for 20 and ^ and several related compounds including 16. 
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Figure 20. UV photoelectron spectrum of 20 
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Table 31. Ionization energies^ 

IEN lEp lEo 

P(0Me)3'^ 9.22 10.54, 11.11, .11.3 

Me2NP(0Me)2^ 8.63 8.93 10.56(a',a"), ll.Ol(na) 

_20^ a) 8.95 8.95 9.80(a',a"), 11.30(na) 

b) 8.95 9.80 11.30(a',a"), 12.53{na) 

2̂  a) 8.56 8.56 9.60(a',a"), 11.30(ng) 

b) 8.56 9.60 11.30(a',a"), 12.53(na) 

ii® 8.70 . 8.70 10.0, 11.26 

(Me2N)2P0MeC 7.80{a"), 9.15(a'). 8.59 10.63 

P(NMe2)3^ 7.89(a"), 8.77(a') 

9.90(a') 

7.58 

^In eV. "Lone pair" energies unless stated otherwise. 

'^Ref. 161. 

^Ref. 162, 

^This work* 

®Ref. 163. 

^Ref. 27. 

The values of lE^ for ̂  and_21_ bracket closely the value for 

Me2NP(0Me)2. All three of these -values are larger than the average of 

the IE[^ for (Me2N)2P0Me (8.48 ev), as might be expected from the presence 

of a second electron donating Me2N group and one less electron 
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withdrawing alkoxy group on phosphorus. Although the averages of the 

first two values of lE^ for P(NMe2)3 are lower than the IE[^ energies for 

^ or Me2NP(0Me)2, the third value for P(NMe2)3 is unexpectedly 

higher. The difference in lE^ values of the nitrogens in P(NMe2)3 has 

been attributed to an interaction between one of the nitrogen lone-pairs 

and the lone-pair on phosphorus (27). This interaction is evidenced by 

the differences in the experimentally observed lEp value for P(NMe2)3 

versus what one would normally expect. The stepwise decrease in lEp from 

P(0Me)3 to Me2NP(0Me)2 to (Me2N)2P0Me is approximately 0.3 ev. If one 

assumes that the decrease in lEp from the last compound to P(NMe2)3 

should be the same, then the lEp for P(NMe2)3 should be 8,3 ev. However, 

the experimentally found value is 7.6 ev. If the difference in these two 

values (0.7 ev) is applied to the 9.90 ev value of lEfj, this then results 

in an average IE|\| for P(NMe2)3 of 8.6 ev. This is still 0.3 ev higher 

than the average of the other two IE|\j values. This 0.3 ev difference can 

be rationalized by the fact that X-ray structural.analysis of compounds 

such as SeP(NMe2)3 have shown (155,156) one of the nitrogens to be . 

tetrahedral as opposed to planar, thus leading to an increase in the 

ionization energy of its lone-pair. This interaction between the 

nitrogen and phosphorus lone-pairs is illustrated by the MO diagram 

illustrated in fig. 22. 

As can be seen in Table 31, there are two possible assignments for 

the ionization energies of the lone-pairs on phosphorus and oxygen in 

compounds andOriginally, assignment b) was favored on the basis 

of the greater .sp^ character of the oxygens in 20_and^as opposed to 23 
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Figure 22. MO diagram for nitrogen and phosphorus 
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www.manaraa.com

183 

and P(0Me)3. The greater sp^ hydrization was evidenced by the smaller P-

0-C angles of 113.5° and 115.3° in compounds ^and 21_as compared to 

120° angle found inand PfOMe)^. It was felt that this increase in 

sp^ hydrization should lead to a decrease in u-bonding from 0 to P in 20 

and^ which would lead to a higher positive charge on phosphorus and a 

higher lEp. The higher I Eg values for assignment b) in compounds 20 and 

21 as compared to PfOMe)^ could be attributed to an increase in s orbital 

involvement between oxygen and phosphorus upon rehybridization. However, 

it was also observed that assignment b) failed to agree with the 

Jsip data obtained on the selenides of ^ and other similar 

compounds. 

One bond ^^P-^^Se coupling constants have been observed over a wide 

range of frequencies (500 Hz) (13). The use of these coupling constants 

have been shown to be an effective method of measuring the inductive 

effects on phosphorus stemming from variations in substituent 

electronegativities and from molecular constraint (13). Table 32 shows 

the 6 P and Joi 77 values for the corresponding selenides of 20 and 
jj.p_//Se — 

along with the values of some related compounds. Previous work has 

shown that as the positive charge on phosphorus increases, either by 

molecular constraint or increased substituent electronegativity, the 

value of J01 77 increases. Therefore, as can be seen, the value of 
Jip-''Se 

Jsip 77^ increases upon replacement of Me2N groups by MeO groups. 

Although the values of 77^ for ^ and 4^are larger than that for 

Me2N(Se)P(0Me)2, as would be expected on the grounds of increased 

molecular constraint, it is very surprising that the couplings are 
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Table 32. NMR chemical shifts (ppm) and Joi 77 coupling constants 
(Hz) P- Se 

(plp 
(±0.5) 

SeP(0Me)3* 78.0 954 

68.6 985 

66.8 996 

68.8 949 

Me2N(Se)P(0Me)2'^ 87.1 903 

79.2 914 

76.9 909 

75.1 895 

77.6 924 

SeP(NMe2)3® 82.5 784 

®See ref. 13, 

^This work-

substantially lower than for SePfOMe)]. This would not be expected due 

to the lower lEp values for P{0Me)3 as compared to those given in 

assignment b forandSecondly, it is odd that a small change in 

J31p 77^ from Me2NP(Se)(0Me)2 to 4^ (11 Hz) would correspond to a 0.9 ev 

difference in lEp values of the parent phosphites, whereas the small 

change in values of 5 Hz in going from SeP(0Me)3 to ^ 

corresponds to a much smaller difference in lEp (0.16 eV) of their parent 

phosphites (26). Thirdly, it is not yet clear why the approximately sp^ 
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hybridizational character of oxygen in_^ and21 (used to support 

assignment b) in Table 31 is not at least similar in Me2NP(0Me)2, thus 

leading to a higher lEp value than the 8.93 ev assigned to this acyclic 

analogue by others (162). Fourthly, given the structural similarity of 

^and_l^, it seems questionable that there should be such a large 

increase in lEp (0.8 ev). Fifthly, the conformation of Me2NP(0Me)2 as 

calculated by semi-empirical MNDO methods should be that of Cg symmetry 

Fig. 23 (162). The arrangement of lone-pairs in this conformation should 

cause a higher lEp than for the conformation of _20 and(as illustrated 

by the conformations of lone-pairs in similar compounds (Fig. 24) 

(163)). This is due to lack of interaction between the lone-pairs on 

oxygen and phosphorus in the acyclic compounds, which would normally tend 

to raise the energy of the phosphorus lone-pair. However, the 

approximate equivalence of the lEp values under assignment a) with that 

of Me2NP(0Me)2 may be due to greater sp^ character in the ring oxygens of 

^ and ^ which would tend to reduce lone-pair interactions between 

phosphorus and oxygen. 

The photoelectron assignments given in a) would seem best since they 

remove all five objections to assignment b). At the same time the values 

in assignment a) for _20 and_21_ are in agreement with those found for 

Me2NP(0Me)2 (162) and (163). However, it would appear that the lEg 

for the a',a" interactions of the p AO's on the oxygens in 20 and 21 are 

quite low compared to those for Me2NP(0Me)2. This would not be expected 

especially if the oxygens in ̂  and ̂  possess more sp^ character. 
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Me 

Me 

Me 

Me 

Figure 23. Conformation of MegNPfOMejg as 

calculated by semi empirical MNDO 
methods (162) 

Figure 24. Proposed conformation of 26 (163) 
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We now know that compounds such as and ̂  adopt the equatorial 

amino group conformation in the solid phase. Previous work by Mosbo and 

this work confirm that this conformation is preferred in the solution 

phase. It is logical to question if this conformational preference holds 

in the gas phase wherein their PE spectra are measured. Upon analysis of 

the PE data, we believe this to be the case due to the following 

observations. The PE spectrum of_58 (which is known to be 100% in the 

axial MeO conformation in solution as judged by the exclusive presence of 

this conformation upon equilibration of 8 and 38) is similar to the PE 

spectra of ^ but is quite different from the PE spectrum of ^ (26). 

Therefore, since the methoxy derivative shows the same conformation in 

the gas phase as that observed in the solution phase it seems reasonable 

that the equatorial Me2N group is favored in the gas phase as it is in 

the solution phase. This conclusion seems reasonable since it is steric 

factors and not electronic factors which dominate in the solid and 

solution phases and there is no reason to assume that electronic factors 

would become dominant in the gas phase and cause the axial Me2N conformer 

to become favored. 
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PART III: 

THE USE OF PHOSPHORUS CONTAINING DERIVATIZING 

REAGENTS FOR THE ANALYSIS OF ALCOHOLS 
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INTRODUCTION 

NMR spectroscopy has become an extremely important analytical tool 

over the past twenty five years. This is particularly true of NMR, as 

it has become the main method of structural analysis of organic 

compounds. During the same period, NMR has also proved to be an 

important technique in the study of phosphorus-containing compounds. 

One of the advantages of NMR is that the range of chemical 

shifts is large (ca. 500 ppm) as compared to 40 ppm for NMR. Since 

different classes of phosphorus compounds (phosphines, phosphites, 

phosphates, etc.) have markedly different chemical shifts, a ^^P NMR 

analysis of a mixture of phosphorus compounds can afford information on 

the types of compounds contained within the mixture. 

NMR can also be used as a quantitative method of analysis. As is 

the case with NMR, under optimum conditions, the peak areas contained 

in continuous wave ^^P NMR spectra are proportional to the relative 

amounts of each of the phosphorus compounds contained in the sample. 

However, over the past ten years Fourier Transform (FT) techniques have 

been applied to ^^P NMR and essentially replaced the use of continuous 

wave techniques. The use of FT techniques has allowed ^^P NMR to be used 

as a rapid method of qualitative analysis for phosphorus compounds in 

concentrations of 10"^ M or higher. 
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The area under a peak contained in an NMR spectrum depends upon 

several factors (Eq.52); 

NBju2 
Peak area a r,, (52)  

KT(1 + Y 

where N = number of nuclei giving the signal, = applied magnetic 

field, |i = magnetic moment, = spin-lattice relaxation time and Tg = 

spin-spin relaxation time (164). As seen in Equation (52), the value 

can have a great effect on the peak area observed for a particular 

compound. Under continuous wave conditions relaxation time has little • 

effect on the observed peak area. However, in order to obtain accurate 

peak areas under FT conditions, it is important to maintain the pulsing 

frequency sufficiently slow to allow the observed nuclei enough time to 

relax before being pulsed again. This point is especially important when 

compounds contained in the sample have very different Tj values. 

The spin-lattice relaxation times (T^) for various phosphorus 

compounds vary over a wide range, from 1 to 25 seconds (165,166). It has 

been suggested (165) that in order to obtain valid analytical data using 

FT-NMR techniques one must allow three times the longest T^ between 

successive pulses in order to obtain an accuracy of ± 5%. With compounds 

such as P(0-i_-Pr)3, which has a T^ of 18 sec (165), this represents a 

delay of approximately 1 minute between each pulse. Under conditions of 

low concentration, where a large number of scans is required to achieve 

an reasonable signal to noise ratio, such a procedure would be 

unacceptable. 
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The most common method of reducing large Tj values is to add a small 

amount of paramagnetic material to the NMR sample. Gurley and Ritchey 

(167) have reported the use of Fe(III) complexes as relaxation agents in 

the analysis of inorganic phosphates. Kasler and Tierney (168) have also 

used Cr(acac)3 in the quantitative analysis of phosphorus contained in 

various organic compounds. However, most trivalent phosphorus compounds 

can function as ligands. Due to differences in their ligating 

properties, it is.possible that their relaxation properties may be 

different upon coordination to an iron or chromium atom. It is also 

possible that ligand exchange processes between the phosphorus compounds 

and these metals could lead to excessive line broadening which would 

render any quantitative NMR analysis of these compounds inaccurate (165). 

In order to solve this problem, Stanislawski and Van Wazer (165) 

have investigated the use of the 4-hydroxy and 4-amino derivatives of 

2,2,6,6-tetramethyl piperidinooxy free radical as shiftless 

relaxagents. It was observed that these free radicals, to which 

phosphorus can not directly bond, could lower the values of compounds 

such as PPhg and (C2H50)3P0 from 12.5 and 16.8 seconds to 0.58 and 0.63 

seconds, respectively (molar concentration of P = 0.6 and molar 

concentration of free radical = 0.07). 

It occurred to us that quantitative ^^P NMR could be applied to the 

analysis of alcohol mixtures via the use of the following reaction (Eq. 

55). 

R2P-CI + ROM + EtgN > R2P-OR + EtgNH+Cl- (55) 
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The use of this reaction to derivatize alcohols seemed attractive since 

equation (55) was known to proceed quantitatively (24). However, it was 

important that the proper derivatizing reagent be selected so as to be 

able to discern the types of alcohols in a mixture on the basis of 

resolution of the chemical shifts of the products esters. 

Though gas chromatographic methods of analysis for mixtures of 

alcohols were already known (169), this method seemed promising for such 

uses as the analysis of alcohols contained in more heterogeneous 

mixtures, such as coal. In the past, investigators have used (CFgCOj^O 

(170) and (CH3)3SiCl (171) to characterize -OH, -NH, and -SH groups 

contained in coal. The use of the aforementioned chlorophosphorus 

compounds as derivatizing reagents seemed promising since reaction (55) 

was known to proceed in high yield and NMR analysis of the 

derivatized coal could give information on the types of -OR groups bound 

to phosphorus. Analysis of the observed chemical shifts, followed by 

comparison to those of known model compounds (derivatives of both 

aliphatic and aromatic alcohols) could provide information on the types 

of alcohols contained within the coal. 

Preliminary work by Squires and co-workers (172) indicated that 

derivatizing reagents containing five membered rings, such as _H, gave 

the greatest difference in chemical shifts between compounds with 

different exocyclic groups. As can be seen in Table 33 (172) the 1,3,2-

dloxaphospholanyl compounds exhibited the largest chemical shift 

difference (6 ppm) between aliphatic and aromatic alcohol derivatives. 
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Table 33. Phosphorus chemical shifts of model compound derivatives® 

R2PCI + R'OH » R2P-OR' + HCl 

R^P 
^ 

R'O I ,P PhgP D 
128.1 127.0 

HgO 134.7 127.1 113.9 

CH3CH2CH2CH2O 134.6 127.2 111.0 

^ppm downfield from external 85% H3PO4. 

In this chapter is discussed further use of as a derivatizing 

reagent for the analysis of various types of alcohols, the use of 

2,2,6,6-tetramethyl piperidinooxy free radical as a shiftless relaxagent, 

the NMR parameters used in the development of this analysis technique and 

extension of this procedure to the analysis of alcohols contained in some 

selected coal-pyridine extracts and coal tars. 
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EXPERIMENTAL PROCEDURES 

All solvents were reagent grade or better. All chemicals were used 

as received with the exception of phenol which was sublimed before use. 

The synthesis of the derivatizing reagent, is described in chapter 

one of this thesis. The 4-amino-2,6-dimet'hylpiperidinooxy free radical 

was obtained from Aldrich Chemicals. ^^P NMR spectra were obtained on 

samples contained in 10 mm tubes on a Bruker WM-300 NMR spectrometer 

operating at 121.5 MHz. The spectrometer operated in the FT mode with an 

internal lock provided by atoms contained in the solvent. The 

external standard was 85% H3PO4 sealed in a 1 mm capillary tube held 

coaxially in the sample tube by a Teflon vortex plug. All downfield 

shifts of H3PO4 were considered positive. Various pulse sequences used 

during the collection of NMR data were generated by an Aspect 2000 

computer system which was interfaced to the spectrometer. 

A typical analysis of a particular alcohol or alcohol mixture was 

carried out in the following manner: In a 25 ml vial was placed 2.00 

mmole of the alcohol or alcohols, 0.512 g (2.00 mmole) of triphenyl 

phosphine (acting as internal standard), 0.7 ml (0.005 mole) of 

triethylamine, 5.0 ml of CHCI3, and 0.7 (0.006 mole) of _H. The mixture 

was shaken for approximately 1 minute. Approximately 1.5 ml of this 

mixture were added to a 10 mm NMR tube which already contained 1.5 ml of 

CDCI3 and 0.3 mmole of 2,2,6,6-tetramethylpi peri di nooxy free radical. 

Analysis,of coal tar mixtures was carried out in the same manner, 

with the exception that 0.15 g of coal tar was used instead of the 
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alcohols. Preparation of the coal tars is described elsewhere (173). 

Analysis of the pyridine coal extract was carried out in the following 

manner. The coal extract (0.524 g) was mixed with 20 ml of fresh 

pyridine and sonocated for 10 min. The solution was filtered through a 

0.05 |jTi millipore filter. To a 10 mm NMR'tube was added 1.5 ml of this 

solution, 0.0700 g (0.267 mmole) of PPhg, 0.3 mmole of the above-

mentioned free radical, and 1.5 ml of CDCI3. The ^^P NMR spectrum of 

this mixture was then collected. Preparation of the pyridine coal 

extract was described previously (174). 

A spectrum of the mixture was collected with either continuous or 

gated decoupling techniques. Continuous decoupling involves leaving the 

proton decoupler on at all times during the entire spectrum 

acquisition. Gated decoupling entails having the decoupler on only 

during data acquisition. The decoupler is then turned off during the 

delay time between pulses. A delay time between pulses of eight seconds 

was used. It was felt that eight seconds was sufficient to ensure the 

complete relaxation of the phosphorus nuclei in the presence of the 

piperidinooxy- free radical since Stanislowski and Van Wazer had shown 

that similar compounds had Tj values of 0.5 sec in the presence of a 

similar free radical (165). 

Upon completion of collection of the spectrum, the peaks 

representing the PPhg (the internal standard) and the derivatized alcohol 

or alcohols (OCH2CH2OPOR) were expanded (0.25 ppm/1 inch of paper) and 

integrated with the aid of a planimeter in order to yield the relative 
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amounts of the alcohols compared to the standard contained in the 

mixture. 

Results and discussion 

The use of NMR techniques to identify and quantify materials is 

widespread. The technique described herein represents the first time 

that alcohols have been identified and quantified using phosphorus-

containing derivatizing reagents. As seen in Table 34, the 1,3,2-

dioxaphospholanyl derivatives possess a ca. 6 ppm difference in chemical 

shift between the aliphatic and aromatic oxygen derivatives. It would 

appear that due to the closeness of the chemical shifts within a 

particular class, the method would be inappropriate for distinguishing 

between, for example, _t-butanol and sec-butanol in an unknown mixture. 

However, it certainly appears possible to identify and quantify the 

presence of both aliphatic and aromatic alcohols in a mixture. 

Table 35 shows the ratio of integrated areas of 1,3,2-

dioxaphospholanyl oxygen derivatives to PPhg compared to what was known 

to be present in the mixture. Accumulation of NMR data was obtained 

under continuous broad band proton decoupling. Table 36 shows the same 

information; however, accumulation of the spectrum was done with gated 

proton decoupling. As can be seen, the agreement between the determined 

and actual ratios is much closer under conditions of gated decoupling. 

The explanation of this result lies in the fact that under gated 

decoupling conditions the NOE enhancement of the NMR signal by the 
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Table 34. Phosphorus chemical shifts of 1,3,2-dioxaphospholanyl 

derivatives of various alcohols (OCH2CH2OP-OR)®»'' 

Chemical shift 
(ppm) (±0.3 ppm) 

m-Bu 

sec-Bu 

t-Bu 

135.6 

136.5 

135.2 

135.7 

129.7 

129.1 

0 

PhCHgC 

0 
IP 

PhC 

trans-PhCH=CHC(0) 

128.5 

129.0 

128.4 

^Relative to 85% H3PO/J, 

^Chemical shift of OCH^CH^PCl is 169.2 ppm,. 
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Table 35. Comparison of ratios of peak areas of 1,3,2-dioxaphospholanyl 

derivatives (OCH2CH2OPOR) to PPhg under conditions of broad 

band decoupling 

R actual ratios of moles PPhg 

to moles of ROM in mixture 

(±0.007) 

Ratio of peak areas for 

moles of PPhg to moles of 

ÔCH2CH20P(0R) found by NMR 

(±0.07) 

jv-Bu 1.062 1.03 

sec-Bu 0.756 0.68 

^-Bu 0.770 0.55 

PhCH2 0.974 1.06 

Ph 0.943 0.76 

0 
II 

Ph-C-

0.889 

0.813 

0.70 

0.72 
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Table 36. Comparison of ratios of peak areas of 1,3,2-dioxaphospholanyl 

derivatives (5CH2CH^P(0R)) to PPhg under conditions of gated 

decoupling 

R Actual ratio of moles Ratio of peak area for moles of 

PPhg/moles ROM in PPhg to moles of 0CH2CH20P(0R) 

mixture (±0.007) found by NMR (±0.07) 

JT_-BU 0.960 1.01 

sec-Bu 0.631 0.61 

_t-Bu 0.676 0.67 

PhCH2 ' 0.914 0.92 

Ph- 0.876 0.88 
1 . 

o6 1.422 1.29 

0 
II 

Ph-C- 0.700 0.65 

broad band decoupling of the protons is eliminated. Under conditions of 

continuous broad band decoupling, NOE enhancement of phospholanyl 

derivatives may differ from that of the PPhg, thus causing the lineshape 

of their NMR peaks to vary independently. This of course would render 

inaccurate any comparative integration of the peaks contained in the 

spectrum. 
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The procedure was also applied to mixtures of alcohols. Several 

different mixtures were prepared and analyzed. Table 37 gives a 

comparison of the actual percentages of a particular alcohol in the 

mixture to the percentages found in the analyses using broad band 

decoupling techniques. Table 38 gives the same comparison, using gated 

decoupling techniques. As was observed in the single alcohol analyses, 

gated decoupling gave the more accurate results. Again, this result must 

Table 37. Results of NMR analysis of alcohol mixtures using 14 as 
derivatizing reagent, PPhg as an internal standard, and broad 
band decoupling 

Mixture R Actual percentage Found percentage 
of ROM in mixture in mixture 

(±0.2) (±0.2) 

1 _n_-Bu 32.3 27.2 

sec-Bu 38.9 39.0 

Ph 28.8 33.8 

2 sec-Bu 43.3 47.1 

PhCH=CHC(0) 13.7 12.0 

2-naphthyl 42.9 40.9 

3 sec-Bu 36.2 35.8 

Ph 23.0 29.9 

PhC(O) 11.3 17.8 

PhCHg 29.6 16.5 
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Table 38. Results of NMR analysis of alcohol mixtures using 14 as 
derivatizing reagent, PPhg as an internal standard, and gated 
decoupling techniques 

Mixture R Actual percentage of ROH 
in mixture (±0.2) 

Found percentage 
of ROH in mixture 

(±0.2) 

1 _r[-Bu 28.5 27.2 

sec-Bu 39.0 39.0 

Ph 32.4 33.7 

2 sec-Bu 41.4 41.1 

PhC(O) 33.3 33.7 

2-naphthyl 25.2 25.3 

3 sec-Bu 37.5 35.7 

Ph 27.6 29.9 

PhC(O) 18.0 17.8 

PhCHg 16.8 16.6 

be due to removal of nonuniform NOE enhancement of the 1,3,2-

dioxaphospholanyl derivatives contained within the mixture. 

Attempts were made to qualify and quantify the types of -OH groups 

in coal tars and pyridine coal extracts using the above techniques. Due 

to the similarity of the chemical shifts of similar aliphatic and 

aromatic alcohol derivatives it does not appear feasible to differentiate 

sec-butyl alcohols from_^-butyl alcohols or phenols from naphthols 

contained within the coal by-products. However, aliphatic alcohols can 

be differentiated from aromatic alcohols. 
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Subsequent analysis of coal tars and pyridine extracts of Kentucky 

#8 coal revealed that the amount of -OH functional groups in these 

materials was rather small. Previous analyses of these materials had 

shown them to contain only 8% oxygen by weight (175). In all cases, 

small humps were observed in the baseline of the gated decoupled NMR 

spectra of the derivatized coal products. These humps were centered at 

134 and 128 ppm. This would seem to be indicative of the presence of 

both aliphatic and aromatic alcohols contained in the coal products. Due 

to their small size, accurate integration of these humps against a PPhg . 

internal standard was not possible. However, it appeared as though the 

peak at 134 was approximately twice as large as the peak at 128 ppm. 

This would seem to imply that there was twice as much aliphatic alcohol 

as aromatic alcohol contained within the coal products. This result does 

not seem reasonable considering the highly aromatic nature of coal 

(175). Analysis of blanks (no extract or tar present) did show the 

presence of a small peak (< 4%) of area of peak for at 134 ppm. Since 

the reported chemical shift of ÔCH2CH2OPOCH2CH2OPOCH2CH2O is 133 ppm 

(176), it is possible that part of the peak at 134 ppm stems from traces 

of oligomeric impurities contained within the derivatizing reagent. 

These impurities could give the false impression that there is more 

aliphatic than aromatic alcohol in the coal extracts and tars. Though 

this procedure appears to be inappropriate for the analysis of -OH in 

coal, this procedure is useful for the analysis of alcohols when they are 

present in higher concentrations. 
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CONCLUSIONS 

As shown in this dissertation the catalytic properties of a NiL^ 

complex depend in large measure upon the steric properties of the ligands 

contained within the complex. An X-ray structural analysis of Ni(6_)4 

showed the nickel atom to be tetrahedrally coordinated and there appeared 

to be no change in the ligand's conformation upon coordination. The 

results of this structural investigation suggests that the large 

differences in the catalytic properties of the complexes investigated 

stem from steric interactions between ligands contained within the 

complex. 

This work suggests that the role of a Lewis acid cocatalyst is that 

of a ligand dissociation promoter. A Lewis acid, such as AICI3, was 

found to promote the formation of a coordinatively unsaturated NiLg 

species from the parent NiL^ complex. The NiLg species is thought to 

bring about olefin isomerization via a ir-allyl olefin isomerization 

mechanism as opposed to the a-bonded alkyl isomerization mechanism which 

is invoked for the NiL^/H* system. Attempts were made at heterogenizing 

these NiL^ catalysts. However, in all cases these catalysts were found 

to be much less active than their homogeneous analogues. This reduction 

in activity was attributed to the structural characteristics of these 

hybrid catalysts. 

An X-ray structural study of two aminophosphites, _20 and showed 

each compound,to have a planar stereochemistry about the nitrogen. 

Analysis of the structure also revealed substantial N-P multiple 
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bonding. Examination of PES data for_^ andreveals that alternate 

assignments for the phosphorus lone-pair I Es had to be considered, one 

which suggests that these molecules are considerably less basic than 

their acyclic analogue, Me2NP(0Me)2. The other assignment suggests that 

the basicity of all three molecules is the same. Solution 31p-77sg NMR 

coupling data would seem to suggest that the basicity of all three 

compounds is the same. 

Finally, a procedure was developed to quantify the amounts and types 

of alcohols contained within a mixture using a phosphorus-containing 

derivatizing reagent. The procedure uses quantitative ^^P NMR techniques 

to determine the actual amount of alcohol (or alcohols) contained within 

a mixture. Attempts to analyze alcohols contained in coal tars and coal 

pyridine extracts were unsuccessful due to the low concentration of OH 

groups in coal. 
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-5 6 723 711 -12 7 252 -298 
-5 8 1080--1078 -12 8 246 270 
-5 10 573 572 -12 9 435 432 
-5 11 ' 280 -292 -la 11 374 -323 
-3 la 203 -229 -12 13 197 165 
-S 13 320 309 -10 1 910 -967 
-S M 288 -232 -10 3 1007 1077 
-3 13 184 -232 -10 3 686 -733 
-5 16 166 172 -10 6 200 134 
-3 1 723 -734 -10 8 212 -176 
-3 2 198 -04 -10 13 198 -127 
-3 3 886 907 -10 13 266 239 
-3 4 636 502 -0 1 893 879 
-3 3 430 -332 -8 2 340 -307 
-3 6 324 -599 -8 3 1090-1073 
-3 8 484 492 -8 3 868 863 
-3 10 797 -736 -8 6 137 -182 
-3 11 491 492 -0 7 333 -369 
-3 13 586 -548 -8 8 293 200 
-3 14 323 316 -8 12 259 -270 
-3 13 243 237 -0 14 143 193 
-1 1 276 235 -D 13 210 -208 
-1 2 637 -529 -8 17 221 232 
-1 3 303 238 —6 1 336 -301 
-l 4 277 -237 -6 2 896 940 
-1 6 492 469 -6 3 1066 1129 
-1 7 201 -114 -6 4 416 -394 
-l 9 486 509 -6 9 771 -804 
-l 10 298 370 -6 7 472 474 
-l 11 770 -703 -6 8 233 -199 
-1 13 269 256 -6 12 147 147 
-1 17 307 272 -4 1 487 499 
-1 19 206 -232 -4 2 953 -961 

1 -9 397 67 -4 3 768 -790 
3-13 177 -197 -4 4 602 616 
3 -7 167 -130 -4 9 693 627 
3 -6 139 103 -4 6 234 176 
7- 16 161 218 -4 7 324 -468 
9-•14 248 238 -4 10 392 -302 
9 -9 161 174 -4 12 337 391 

U- 12 131 124 -4 14 487 -482 
11-11 148 122 -4 15 288 266 
11 -3 138 113 -4 16 388 304 
13-•13 168 -18 -4 18 132 -162 
13 -8 172 -190 -2 2 789 844 
15 -9 132 100 -2 3 223 236 
15 -a 303 201 -a 4 589 -601 

-2 3 609 -989 
H - -6 -2 7 228 217 

K L FQ FC -2 9 138 114 
-10 a 214 94 -2 10 1132 972 
-18 V 241 20 -2 12 857 -899 
-16 2 191 -61 -2 14 207 309 
-16 11 193 -109 -2 13 407 -335 
-M 7 369 340 -2 16 248 -236 
-M 9 444 - 4 0 3  -2 17 206 183 
-la 1 194 215 -2 18 242 247 
-12 3 192 -176 0 0 136 IQO 
-13 3 162 170 0 2 323 329 

0 4 319 -242 -5 8 482 404 
0 8 1092 926 -3 9 333 250 
0 10 1567-1475 -5 10 289 -294 
o 12 1234 1178 -3 12 240 -239 
0 18 333 -329 -3 13 401 -408 
2-14 168 -144 -3 16 138 -104 
8- 14 228 -200 -3 17 251 272 
8 -8 190 240 -9 18 208 213 

10 -a 209 -27 -3 1 199 -99 
16 -7 269 -243 -3 5 977 -911 

-3 7 320 389 
H • -9 -3 8 292 -271 

K L FO FC -3 9 310 -332 
-19 1 198 121 -3 11 380 536 
-17 9 209 -174 -3 12 462 302 
-19 3 152 210 -3 13 381 -419 
-19 8 269 279 -3 19 633 307 
-19 11 236 -294 -3 16 361 -394 
-13 1 287 257 -3 17 162 -239 
-13 3 224 -228 -1 1 487 -478 
-13 8 417 -376 -1 3 338 310 
-13 10 390 380 -1 4 189 -176 
-13 11 169 149 -1 6 218 -249 
-13 12 237 -298 -1 7 2026--1898 
-11 1 220 -157 -1 9 1739 1643 
-11 2 718 -723 -1 10 246 137 
-11 3 184 -168 -1 11 1016 -997 
-11 4 635 581 -1 12 293 -279 
-11 3 262 232 -1 13 908 849 
-11 6 432 -417 -1 16 367 392 
-11 8 209 183 1- 17 209 1»4 
-11 10 190 -197 3-20 256 1116 
-11 12 249 237 9-13 203 -131 
-9 1 377 369 9 -3 134 123 
-9 2 1038 1084 11-14 2UU -130 
-9 4 1030-1077 17 -9 141 -73 
-9 6 669 630 17 -8 202 -120 
-9 7 339 -364 17 -7 194 lUl 
-9 11 274 246 
-9 16 280 -192 H " -4 
-7 1 303 -371 K L FQ FC 
-7 2 867 -904 -18 1 220 -13 
-7 3 349 494 -18 3 173 -132 
-7 4 984 969 -16 7 223 -210 
-7 3 263 -222 -16 10 238 226 
-7 6 297 -244 -14 6 201 -189 
-7 7 330 289 -14 8 253 213 
-7 8 274 -206 -14 9 323 -319 
-7 9 171 -83 -14 10 200 -238 
-7 11 276 -323 -14 11 233 233 
-7 13 183 203 -14 13 216 -171 
-7 17 207 -237 -12 1 323 311 
-7 18 219 -266 -12 4 479 -481 
-9 1 441 407 -12 6 369 606 
-9 2 221 193 -12 7 243 -314 
-3 3 408 -369 -12 8 292 -289 
-9' 4 727 -704 -12 9 406 411 
-5 6 651 627 -12 11 279 -319 
-3 7 313 230 -12 13 137 180 

-10 1 449 -417 -a 7 213 -133 -9 11 331 -288 
-10 3 540 936 -2 8 1162--1088 -9 13 402 342 -10 4 340 333 -2 9 990 -903 -9 14 249 263 
-lO 3 786 -820 -2 1 1 387 973 -9 19 380 -398 
-10 6 277 -232 -2 12 325 -323 -9 16 300 -323 
-10 7 434 412 -2 13 746 -688 -9 17 167 137 
-10 14 232 166 -2 14 601 341 -7 1 724 -978 
-10 13 183 168 -a 13 328 279 -7 a 1932-1990 
-10 17 182 -180 -2 17 298 247 -7 3 947 862 
-8 1 721 794 0 2 742 661 -7 4 979 903 
—8 2 226 -228 0 4 372 461 -7 9 1381-1336 
—8 3 798 -869 0 6 1890--1632 -7 7 646 606 
-8 4 279 326 0 8 1838 1989 -7 8 233 -239 
-8 3 1003 983 0 10 773 -766 -7 9 134 108 
-8 6 339 -361 0 12 977 921 -7 lO 220 223 
-8 7 198 -124 0 14 638 -644 -7 11 177 234 
-8 8 494 338 0 16 281 -340 -7 12 296 278 
-8 14 187 -169 0 18 342 329 -7 13 221 -188 
-8 •19 167 -176 2- 17 203 -171 -7 14 318 -208 
-8 16 311 312 4 -7 128 102 -7 19 196 160 
—8 17 311 316 6 -6 130 -204 -7 16 210 277 
-8 19 33a -374 8-15 184 -139 -7 17 291 -279 
-8 21 178 147 12- 11 193 -100 -7 18 221 -261 
-6 1 728 -639 14 -8 168 113 -5 1 874 1013 
—6 a 667 696 16 -9 168 141 -3 2 981 428 
—6 3 812 871 -3 3 1229-1301 
—i 4 709 -697 H > 1 -3 -3 4 931-1039 
-6 9 862 -853 K L FO FC -9 9 1990 1911 
-6 6 323 432 -17 4 223 -2IO -3 6 429 418 
—6 7 190 131 -17 6 176 218 -9 7 992 -987 
-6 8 213 -236 -17 8 194 -213 -9 10 173 -137 
—6 9 960 946 -19 1 294 311 -9 11 314 -303 
-6 10 149 139 -19 2 222 -179 -9 12 290 -300 
-6 11 157 -199 -13 3 162 -90 -9 14 649 670 
-6 13 132 -79 -13 4 228 292 -3 19 214 291 
-6 14 190 133 -19 6 201 -243 -9 16 498 -363 
-6 13 292 214 -13 9 274 270 -9 18 148 137 
-6 16 273 -267 -13 1 160 -144 -3 19 233 -278 
-6 17 499 -434 -13 2 427 409 -9 ai 193 191 
-6 18 296 229 -13 3 269 287 -3 1 639 698 
-6 19 283 303 -13 3 473 -497 -3 3 1132 989 
-4 1 189 -106 -13 7 409 388 -3 4 608 -367 
-4 2 291 344 -13 8 239 -291 -3 9 2030--a 166 
-4 3 402 392 -13 9 283 -197 -3 6 393 491 
-4 4 329 421 -13 10 342 319 -3 7 1091 1036 
-4 6 1348- 1431 -13 11 142 117 -3 a 403 347 
-4 7 838 -640 -13 12 219 -191 -3 10 807 -844 
-4 8 368 301 -11 2 243 -249 . -3 12 926 784 
-4 9 243 292 -11 3 712 781 -3 13 208 -234 
-4 13 379 374 -11 7 679 -647 -3 14 828 -836 
-4 14 189 -231 -11 8 267 232 -3 16 234 315 
-4 15 319 -331 -1 1 10 333 -289 -1 1 1343 1206 
-4 16 260 233 -11 13 290 -238 -1 2 693 316 
-4 17 209 208 -11 14 198 -204 -1 9 140 140 
-2 1 279 143 -9 2 3UB 306 -1 9 318 540 
-2 2 977 -761 -9 4 333 -340 -1 10 417 391 
-2 3 134 -196 -9 6 693 393 -1 11 936 -914 
-2 4 766 -868 -9 7 327 294 -1 12 327 -344 
-2 6 2428 2233 -9 9 130 69 -1 13 703 660 
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-» 14 436 416 
1 -a 1S7 -122 
3-12 140 -117 
3-17 174 -181 
9-19 1U3 -113 

11-16 366 189 
11 -7 133 -118 
13 -8 143 -lia 
15 -9 149 65 
15 -6 191 -191 
13 -4 311 304 

H - -3 
K U FQ KC 

18 0 306 163 
18 5 169 -189 
16 5 373 343 
16 7 307 -150 
14 1 533 -453 
14 3 399 -363 
14 3 383 438 
14 4 178 177 
14 a 30U 175 
14 9 213 -134 
13 1 639 660 
12 2 161 139 
13 3 360 -371 
13 4 468 -440 
13 6 639 643 
13 8 351 -323 
13 9 161 306 
13 10 349 -347 
13 11 395 -407 
13 13 338 369 
13 13 307 386 
13 14 145 -lia 
10 1 399 394 
10 4 400 384 
10 3 453 -401 
10 6 998 -935 

-lO 7 319 340 
-10 a 433 428 

10 9 337 -SOI 
10 10 486 447 
10 11 303 318 

-10 13 . 540 -533 
-10 13 386 -380 
-10 14 359 311 
-8 1 345 361 
-a 2 691 -667 
-8 4 644 373 
-8 5 260 391 
-8 6 24 5 303 
-8 7 990 -966 
-a Q 372 -295 
-a 9 376 379 
-a 10 173 -110 
-8 11 359 -3d3 
-8 13 307 317 

-8 13 463 440 
-a 14 177 -315 
-a 16 351 214 
-8 19 333 -185 
-a 31 159 155 
-6 1 1462- 1511 
-6 2 1944 1638 
-6 4 879 -764 
-6 3 191 -391 
-6 6 638 673 
-6 7 435 391 
-6 a 861 -735 
-6 9 531 -435 
-6 10 376 338 
-6 11 377 604 
-6 13 645 -593 
-6 14 303 -300 
-6 15 333 341 
-6 18 333 337 
-6 20 158 -173 
-6 31 143 -93 
-4 1 305 311 
-4 3 1873-•1677 
-4 4 2771 2602 
-4 S 139 73 
-4 6 1587- 1567 
-4 7 664 634 
-4 a 669 638 
-4 10 176 -336 
-4 11 543 -547 
-4 13 774 731 
-4 13 585 -595 
-4 16 140 -148 
-4 30 355 335 
-4 33 163 — 166 
-3 1 363 384 
-3 3 668 -440 
-3 4 3243-1953 
-3 3 1751 1665 
-2 6 1071 1358 
-3 7 4ta -313 
-3 8 383 -310 
-3 9 113 -161 
-3 10 543 493 
-3 11 700 687 
-3 13 381 -370 
-3 13 678 -628 
-3 14 266 344 
-3 15 335 374 
-3 16 163 -154 
0 3 737 -698 
0 4 445 611 
O 6 217 287 
0 a 373 -274 
0 10 834 -006 
0 13 1138 1131 
0 14 412 -313 
0 16 334 343 
0 18 197 -SOI 

8-13 197 175 
10 -9 354 -338 
12-17 188 130 
13-15 173 -138 
14- 10 318 -313 
14 5 147 -154 
16 0 333 -333 
16 -2 434 433 

H - -1 
K L FO FC 

-19 3 171 -131 
-19 6 163 -83 
-17 3 335 346 
-17 3 171 169 
-17 4 334 -335 
-13 1 303 343 
-13 3 330 -338 
-15 3 153 -169 
-13 4 367 344 
-13 3 133 141 
-13 7 146 -79 
-13 1 410 -439 
-13 2 652 639 
-13 3 428 435 
-13 4 179 -163 
-13 5 309 -373 
-13 9 291 263 
-13 10 258 306 
-13 11 251 -371 
-13 12 281 -310 
-13 14 181 174 
-11 3 386 -277 
-11 3 340 -356 
-11 4 566 539 
-Il 3 589 588 
-11 6 537 -497 
-11 7 367 -430 
-11 a 309 339 
-11 10 •180 -237 
-11 11 609 363 
-Il 13 300 339 
-Il 14 196 -327 
-11 16 177 184 
-Il 18 313 -159 
-9 1 184 -139 
-9 3 140 -78 
-9 3 163 88 
-9 4 793 -764 
-9 5 333 -334 
-9 6 1138 1143 
-9 7 416 415 
-9 8 1043- 1068 
-9 10 440 404 
-9 11 183 -235 
-9 13 167 307 
-9 14 155 142 
-7 1 387 -561 
-7 3 331 280 

-7 3 323 93 
-7 4 334 -349 
-7 5 400 297 
-7 6 1040-1066 
-7 8 1565 1387 
-7 9 444 -438 
-7 10 964 -978 
-7 11 136 100 
-7 12 444 434 
-7 14 143 -sa 
-5 1 911 904 
-5 3 641 -653 
-5 3 212 -439 
-3 4 359 -168 
-5 6 tOlO 873 
-5 7 1392-1380 
-5 a 237 -153 
-3 9 1099 996 
-5 11 171 -312 
-5 12 305 -334 
-3 13 204 -150 
-5 14 573 515 
-5 13 159 146 
-5 16 366 -264 
-3 1 357 -435 
-3 2 3106 2813 
-3 3 3329 3938 
-3 4 13U4-1414 
-3 3 3148--3087 
-3 7 1691) 1611 
-3 8 378 -340 
-3 9 133 -173 
-3 10 303 348 
-3 11 243 -364 
-3 13 3U3 373 
-3 13 339 -345 
-3 14 tUU -561 
-3 13 441 418 
-3 16 391 330 
-3 17 307 -196 
-3 31 206 -167 
-1 1 4343 4334 
-1 2 535 -348 
-l 3 1765 1953 
-1 4 978 1053 
-1 S 1198 1014 
-1 6 739 -739 
-1 8 667 557 
-1 9 393 334 
-1 11 336 -398 
-1 13 297 -369 
-1 13 347 347 
-1 15 504 -330 
-1 17 35t. 348 
-1 19 313 -336 
-l 21 351 233 

1--16 •149 -140 
1 -Il 131 -175 
3 11 130 -75 

7 -3 170 83 4 3 173 -60 14 a 334 -363 
9 -9 180 lUI 4 6 466 -508 14 3 331 -323 

11 -9 171 103 4 7 493 403 14 8 196 -134 
13 -4 144 -99 4 a 1495 1475 14--10 134 97 
15-15 161 -151 4 9 191 -313 14 -7 151 -100 
15- 14 155 -191 4 10 434 -418 16 0 354 -270 
13 -4 354 303 4 13 181 196 16 -4 170 -139 
19 -1 177 115 4 13 473 -430 16 -3 330 -333 

4 14 163 T191 16 -2 340 332 
H - 0 4 13 458 429 16 -1 343 333 

H L FO FC 4 16 309 30U 18 -3 164 -147 
30 3 155 -26 4 17 163 -147 
18 0 160 155 4 18 303 -397 H - 1 
16 a 153 146 4 30 160 134 K L FQ FC 
14 11 190 166 6 1 163 -183 -19 -3 138 -47 

•14 13 311 -177 6 3 419 -431 -13-18 143 94 
•14 15 333 307 6 3 438 474 -13 -6 179 -88 
14- 17 144 166 6 4 388 343 : -11--13 141 323 

-13 4 149 -303 6 7 695 -785 -11 -9 190 333 
13 7 183 -133 6 a 840 -907 -3-19 188 164 

•10 10 131 36 6 9 1266 1146 -1-33 148 73 
10 18 154 2 l> 10 1037 1034 1 0 1144-1030 
10-•13 148 104 6 11 654 -64U 1 1 3433-3313 
10--Il 151 -67 6 12 196 -69 1 2 1757 1U26 
-6 14 170 -337 6 13 310 399 1 3 358 -313 
-4 19 154 133 6 15 205 -215 1 6 678 646 

0 3 3531-•3903 6 33 184 83 1 7 346 -47 
0 4 3142-2784 6 -6 113 139 1 a 356 -314 
0 6 1016 941 8 0 360 211 1 9 333 -133 
0 a 436 -171 a 1 377 -437 1 13 368 -334 
0 10 698 -498 a 3 189 198 1 15 703 709 
0 13 163 163 8 5 309 -348 1 17 391 -380 
0 14 478 -501 8 7 918 961 3 0 1017 867 
0 16 685 671 8 a 163 303 3 1 1485-1303 
0 18 343 -354 a 9 1344-1307 3 3 3980-3639 
0 20 331 196 8 10 334 -370 3 3 537 -474 
0 33 161 -70 8 11 633 617 3 4 660 904 
3 0 3550- 3683 10 0 333 387 3 5 821 801 
3 1 838 8ù8 10 1 180 -143 3 6 1283--1080 
3 2 2068 3075 10 3 967 -917 3 7 1081-1080 
3 3 313 409 lO 3 1160 1131 3 8 717 686 
3 4 374 -360 10 7 984 -990 3 10 173 148 
3 5 140 -89 10 9 323 480 3 13 419 407 
3 6 1434 1360 10 19 145 -54 3 14 238 -341 
3 7 343 375 13 0 318 -187 3 13 316 -458 
2 8 846 -857 13 1 999--1007 3 16 313 340 
3 9 231 -369 13 3 300 313 3 17 386 387 
3 10 460 -470 13 3 460 439 3 19 330 -176 
3 11 233 -339 13 8 138 37 3 33 163 -47 
3 14 582 579 13 9 301 -300 3 0 840 -941 
3 13 313 -307 13 10 333 -208 3 1 438 411 
3 16 638 -565 13 11 311 258 5 2 306 -131 
2 17 165 14 12 12 179 144 3 4 343 363 
3 18 361 363 13 13 189 -190 3 5 344 -326 
3--13 175 -114 13 15 147 196 5 6 639 664 
4 O 547 -535 12 17 303 -161 5 7 843 734 
4 '1 3U5 365 12 -5 143 U/ 3 8 1391-1434 
4 3 1035 -VU4 14 0 490 545 5 9 774 -803 
4 4 393 -261 14 1 618 392 3 10 738 68a 
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5 11 441 440 -10- 19 217 -152 8 4 966 931 1 7 450 419 
S 13 130 -123 -10-•13 345 -234 a 5 613 -832 1 9 1001--1021 
5 13 209 -223 —6- 16 158 80 8 6 1037-1010 1 10 223 -147 
7 0 519 452 -2-•23 159 52 8 7 1227 1192 1 11 324 320 
7 3 177 101 -2-•20 145 -169 a 8 636 61 1 1 13 374 -374 
7 4 134 -116 0 0 908 968 8 9 736 -727 1 14 137 136 
7 S 642 724 0 2 703 -500 8 10 366 -338 1 13 477 467 
7 6 366 -413 0 4 467 479 8 11 180 137 1 17 289 -301 
7 7 885 -848 0 6 394 910 10 0 133 -71 1 19 207 243 
7 a 1204 1277 0 a 808 611 10 2 316 456 1 22 188 -8 
7 9 B38 776 0 10 438 -332 10 3 711 -646 3 0 1173 1092 
7 10 1179-1080 0 12 183 219 10 4 843 -782 3 1 1436 1266 
7 11 376 -376 0 14 829 -790 10 3 868 864 3 2 2743-•2487 
7 12 302 283 0 16 633 634 10 6 602 602 3 3 708 -893 
7 19 153 -6 0 18 192 -248 10 7 663 -649 3 4 999 1103 
7 20 154 116 2 0 566 378 10 a 134 70 3 6 232 -232 
9 0 698 707 2 1 895 1143 10 10 279 -236 3 7 492 -332 
9 1 144 -90 2 2 1689 1643 10 11 171 -184 3 9 233 242 
9 2 412 392 2 3 3316--3243 10 13 191 169 3 10 326 336 
9 3 445 471 2 4 1007 -963 12 1 306 -476 3 11 714 -662 
9 4 834 -776 2 5 1156 1159 12 2 213 -198 3 13 388 330 
9 3 310 -513 2 6 493 322 12 3 294 252 3 13 289 -310 
9 6 978 974 2 7 670 -632 12 4 368 309 3 16 183 . 229 
9 7 413 396 2 0 233 182 12 3 237 -233 3 18 313 -279 
9 0 1039 -9U0 2 9 162 -146 12 6 213 -242 3 20 182 122 
9 10 572 550 2 11 213 231 12 8 160 -218 3 0 1414-1361 
9 12 201 -193 2 12 405 -444 12 10 486 422 3 1 914 -844 
9 20 174 -73 2 14 708 681 12 12 238 -211 3 2 1694 1602 

11 0 181 221 2 15 167 -201 12 13 132 -163 3 3 137 126 
11 1 141 76 2 16 530 -540 14 0 238 297 3 4 1298- 1188 
11 2 661 -637 2 17 347 249 14 t 434 328 3 3 393 327 
11 3 135 -102 4 1 2579-•2249 14 2 239 -231 3 6 939 894 
11 4 736 708 4 2 665 -436 14 3 249 -267 3 7 338 331 
11 6 538 -518 4 3 1674 1759 14 12 163 140 3 8 297 -337 
11 a 459 421 4 4 641 520 14 13 192 149 3 9 764 777 
11 10 206 -239 4 5 1654-1551 14 14 146 -122 3 11 749 684 
13 0 1017 -969 4 6 510 -527 .. 16 4 284 -310 3 12 270 266 
13 1 135 119 4 7 1017 923 16 13 183 -139 3 13 402 447 
13 2 592 373 4 8 207 -174 7 0 1628 1403 
13 3 140 102 4 12 600 579 H - 3 7 1 474 -417 
13 9 168 174 4 14 479 -481 K L FO FC 7 2 957 -829 
13 11 102 -109 4 16 370 191 -19 -6 189 -191 7 3 440 300 
13 16 222 -190 4 17 217 -301 -17 -1 204 164 7 4 692 679 
13 0 289 302 4 19 163 141 -13-11 190 214 7 3 323 330 
13 1 314 -310 6 1 1360 1232 -13-•10 133 -132 7 6 374 -332 
13 2 323 -301 6 2 473 -394 -l l- 16 178 134 7 7 413 • 424 
13 3 249 229 6 3 130 -72 -11-•13 207 -148 7 8 516 364 
13 7 179 -131 6 4 967 -OHO 130 -163 7 9 363 596 
13 B 103 -172 6 5 993 962 -9--18 220 203 7 10 405 -39:i 
15 12 159 132 6 6 754 641 -9-10 140 -109 7 11 3U4 -368 
17 1 203 172 6 7 1299-1142 -7-20 179 i im 7 13 167 lb6 
17 3 230 -237 6 W 666 -621 -1--16 169 -114 9 0 139 -172 

6 9 747 741 -1 -4 414 96 9 1 a'j7 -aou 
H - a 6 10 639 641 1 0 1089 889 9 2 355 323 

K L .-0 FC 6 12 348 -340 1 1 330 -239 9 3 775 761 
10 -7 200 -149 6 14 246 259 1 2 287 311 9 4 610 -596 
16 -6 106 156 8 0 170 -221 1 3 232 -203 9 3 1035 -970 

•16 -3 415 3U5 8 2 376 320 1 4 423 -671 9 6 389 396 
•M -7 149 -58 8 3 275 360 1 3 170 133 9 8 259 -251 

9 9 478 471 2 4 1103- 1039 12 3 478 480 
9 10 496 488 3 * 3 233 -327 12 4 349 283 
9 12 428 -318 2 6 909 928 12 3 318 -433 
9 16 131 -112 2 7 314 393 12 6 187 190 

11 0 236 276 2 8 1034-1028 12 7 433 360 
11 1 389 373 2 9 390 -339 12 8 268 -272 
11 2 314 -339 2 10 836 831 12 9 302 -219 
11 3 1134-1038 2 11 289 238 12 10 194 239 
11 4 303 442 2 12 388 -403 12 17 197 -109 
11 3 827 786 2 13 131 -63 14 0 146 -142 
11 6 270 -234 2 14 160 161 14 1 166 173 
11 9 773 -723 2 18 281 203 14 2 148 164 
1 1 10 284 -233 2 19 236 -247 14 3 337 -331 
11 11 409 393 4 1 1131-1273 14 3 411 409 
11 12 330 294 4 2 1032- 1064 14 6 222 -213 
11 14 176 -179 4 3 1777 1322 14 7 429 -371 
11 18 169 -126 4 4 930 843 14 9 183 200 
13 0 338 -327 4 3 392 -497 16 4 190 -192 
13 2 219 218 4 6 302 -462 16 6 176 186 
13 3 471 416 4 8 326 342 16 7 176 173 
13 4 333 -289 4 10 1012 -947 18 6 170 -196 
13 3 250 -266 4 11 427 -428 
13 6 161 217 4 12 736 669 H " 3 
13 7 163 -164 4 13 428 434 K L FO FC 
S3 9 361 349 4 17 302 -332 -13-13 184 -171 
13 11 208 -237 4 19 307 247 -13-10 231 -227 
13 13 138 -123 6 0 720 -632 -13 -2 170 136 
13 1 . 379 -373 6 1 918 B27 -9-14 131 147 
13 2 137 -132 6 3 1163- 1143 -9 -3 130 -196 
13 3 234 179 6 4 184 188 -7--20 299 247 
17 1 273 239 6 3 200 223 1 0 136 43 
17 3 244 -228 6 9 372 963 1 1 923-1033 
17 10 134 119 6 10 736 744 1 2 1416 1371 

6 12 383 -613 1 3 2748 2488 
H -' 4 6 13 217 -168 1 3 1279- 1339 

K L FO FC 6 17 189 206 1 6 423 -349 
16 -8 148 -202 8 0 333 367 1 7 679 676 
16 -2 232 -39 8 1 1286- 1253 1 8 243 268 
14-12 189 210 8 2 202 120 1 9 921 -869 
14 -7 161 -211 8 3 720 673 1 10 370 -399 
12- 12 184 -21 8 3 393 373 1 11 378 430 
12- 10 166 81 8 8 274 -239 3 0 792 718 
12 -3 139 77 8 9 366 -346 3 1 374 337 
-2- 24 137 -64 8 11 646 376 3 2 1962- 1723 
0 0 361 353 10 O 418 -372 3 3 1126 -1 124 
0 2 1040 -939 10 1 732 737 3 4 163 227 
0 4 284 348 10 2 720 728 3 3 880 966 
0 6 463 -338 10 3 450 -413 3 6 622 637 
0 8 1370 1383 10 4 311 -324 3 7 373 -418 
0 10 032 -843 10 7 193 -102 3 8 206 -203 
0 12 325 361 10 8 517 436 3 9 1001 993 
0 14 306 -238 10 9 277 296 3 10 419 287 
0 16 167 179 lO lO 518 -4U2 3 11 800 -783 
0 111 323 -333 10 11 396 -380 3 12 339 -408 
0 263 205 10 13 197 199 3 16 268 248 
2 0 197 266 10 13 253 -207 3 17 173 124 
2 1 1343 1255 12 0 452 452 3 18 217 -236 
2 2 1001 Vit 12 1 453 -431 3 0 209 -180 
2 3 12BU--1195 12 2 784 -724 3 1 1111- 1065 
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5 3 467 406 - H - 6 10 6 147 130 5 4 390 -365 
5 4 339 -468 H L FD FC 10 11 247 -200 5 8 270 -306 
S S 431 376 -14-11 238 -250 12 1 233 -284 5 10 459 433 
S 6 181 180 -14-10 164 -119 12 3 267 299 5 12 321 -315 
S 7 236 -227 -12 -4 147 -98 12 4 172 -196 5 13 413 -370 
s a 292 -278 -10 O 140 -45 12 5 351 -365 5 14 237 195 
s 9 421 -446 -6-16 150 -192 12 7 307 302 5 15 312 298 
s 11 870 876 -2-11 133 -141 12 9 210 -151 5 16 193 -164 
s 12 278 265 0 2 2169-1873 14 2 335 -301 5 17 157 -129 
5 13 419 -430 0 4 2326 2202 14 4 364 342 7 0 569 581 
S 16 390 -356 0 6 1138-1190 14 9 383 425 7 1 524 536 
3 18 223 222 0 8 1044 1038 14 6 197 -181 7 2 357 -351 
7 0 925 864 0 10 203 -303 14 7 344 -380 7 3 211 -200 
7 1 490 487 0 12 547 -536 16 4 220 -219 7 § 278 203 
7 2" 548 -609 0 14 350 373 16 9 262 -269 7 6 400 359 
7 3 350 272 s 0 576 -449 16 8 203 -186 7 7 258 -304 
7 5 504 -456 2 2 406 403 7 9 179 202 
7 6 206 230 2 3 700 -641 H • 1 7 7 10 350 -368 
7 10 269 -256 . 2 4 737 -731 K L FO FC 7 12 510 501 
7 12 625 579 2 5 380 443 -17 -7 209 -185 7 13 241 211 
7 14 469 -425 2 6 864 899 -13-12 201 -137 7 14 311 -341 
7 17 186 124 2 a 1168-1188 -13 -4 146 131 7 15 183 -245 
9 0 983-1000 2 itv. 612 562 -11-17 163 -124 9 0 468 -465 
9 1 136 -170 2 11 198 -170 -11-12 189 172 9 1 153 41 
9 2 730 613 2 12 200 286 -9-16 172 -209 9 2 186 152 
9 10 230 203 4 0 808 822 -9-14 212 188 9 7 340 336 
9 11 375 -352 4 1 608 497 -9-10 172 129 9 10 272 287 
9 12 557 -474 4 4 572 -431 -5-•19 214 122 9 12 228 -297 
9 14 300 324 4 9 707 -555 -3-20 244 27 11 1 316 -311 
9 16 256 -173 4 6 363 -305 -3-17 228 194 11 2 149 -6o 
9 17 167 -130 4 7 243 184 -1-14 156 -137 11 3 312 349 
tl 0 782 763 4 8 589 540 1 0 324 218 11 4 230 174 
li ! 226 245 4 9 255 -293 1 1 298 -315 11 6 306 —266 
11 2 443 -471 4 10 507 -442 1 2 234 127 11 8 302 263 
11 4 371 302 4 11 277 241 1 3 816 792 13 1 411 401 
11 6 309 -319 4 12 394 395 1 4 623 -573 13 2 164 203 
11 a 195 203 4 14 281 -310 1 5 1711-1753 13 3 (.03 -588 
11 11 233 215 4 16 237 171 1 6 338 385 13 4 350 -377 
11 12 143 139 6 0 975 -931 1 7 895 1010 13 5 2u6 271 
11 16 164 108 6 1 132 -119 1 10 346 416 13 6 392 318 
13 0 235 -176 6 4 599 932 1 11 186 -154 15 3 214 249 
13 1 225 -241 6 8 201 -216 1 12 250 -139 15 4 332 215 
13 2 470 410 6 11 524 -535 1 13 154 156 15 6 293 -296 
13 3 163 -105 6 12 437 -431 1 14 204 -180 15 7 179 156 
13 4 545 -536 6 13 628 564 3 0 406 -441 17 2 257 214 
13 9 178 247 6 14 395 390 3 2 268 215 17 3 263 -54 
13 6 513 471 6 15 314 -301 3 3 305 -368 
13 7 152 -108 6 16 194 -178 3 4 693 623 H - 8 
13 a 341 -297 6 17 156 193 3 5 665 624 K L FO FC 
15 3 223 246 8 0 459 4SI 3 6 670 —663 -16 —6 157 170 
13 4 277 270 8 1 566 -546 3 7 691 —661 -16 -1 146 -186 
15 5 179 -224 8 3 241 201 3 8 642 625 -14 -9 197 87 
15 6 358 -342 8 6 350 -330 3 10 826 -759 -10-•15 195 -184 
15 8 249 280 8 7 172 -240 3 12 165 158 -2-•15 173 -53 
17 3 160 -182 8 11 536 489 3 14 234 194 0 0 531 478 
17 5 295 253 8 13 572 -581 5 0 145 164 0 2 793 —866 

8 15 198 285 5 1 865 -826 0 4 1024 1019 
a 16 225 163 5. 2 167 165 0 6 440 -454 

10 1 460 432 5 3 225 307 0 8 175 -157 
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L • . -4 4 -9 193 -163 10 6 228 216 4-12 99 -70 
H H FO FC 4 -8 903 440 10 7 100 -67 4-11 273 -296 
0 0 2401 2629 4 -7 230 -216 10 10 116 194 4-10 140 -139 
0-1G 93 -109 4 —6 239 239 11 1 237 -208 4 -9 121 -199 
0-15 163 -170 4 -9 917 -822 11 2 96 83 4 -7 80 83 
0-14 89 83 4 -4 292 -262 1 1 4 301 306 4 -6 1201 1176 
0-13 186 179 4 -3 881 -837 12 0 229 -227 4 -4 1 19 139 
0-12 269 268 4 -2 321 -319 12 2 208 -204 4 -2 897 -949 
0 -9 439 407 4 -1 737 799 12 3 102 98 4 -1 274 -288 
0 -B 276 -263 9 1 649 661 12 9 108 -111 9 1 210 -217 
0 -7 360 r349 9 2 639 -627 12 6 103 -98 9 2 942 993 
0 -6 88 77 9 3 676 663 13 1 101 -77 9 3 916 924 
0 -5 212 -203 9 4 429 —416 13 2 273 298 9 4 349 337 
0 -4 313 -298 9 9 181 -167 13 4 113 120 9 9 610 609 
0 -3 390 -369 9 6 123 -126 14 0 266 296 9 6 69 91 
0 -2 898 831 9 7 110 -101 19 1 118 -130 9 7 971 -996 
0 319 -313 9 8 407 389 9 8 192 206 
1 19 103 66 9 10 183 189 L - -3 9 9 217 211 
1-16 98 88 9 12 94 94 H K • FO FC 9 10 291 -299 
1-10 88 91 9 16 119 -136 1 18 79 84 9 11 86 129 
1 -a 168 -171 6 0 999 -983 1-16 133 197 9 13 163 -169 
1 -7 364 -;)32 6 2 179 -199 1-11 139 120 9 14 99 76 
1 -6 480 497 6 3 797 -749 I-IO 326 -299 9 19 96 -139 
1 -4 729 697 A 4 140 149 1 -9 86 99 6 1 989 963 
1 -3 218 201 6 9 199 139 1 -8 121 -114 6 3 406 -420 
1 -a 473 468 6 6 662 629 1 -7 342 -339 6 4 990 999 
1 -i 229 -230 6 a 298 231 1 -6 291 247 6 9 333 -328 
a 0 1214-1340 6 10 173 -174 1 -9 322 -344 6 6 679 662 
a-17 86 -81 6 11 106 -116 1 -4 379 399 6 8 418 4M 
a-i4 121 ' 128 6 12 188 -177 1 -3 231 266 ' 6 9 74 69 
2-13 93 -96 7 1 999 -997 1 -2 986 -483 . 6 10 219 -220 
2-12 102 89 7 2 78 -93 1 -1 962 -629 6 11 193 179 
2-11 137 136 7 3 391 366 2 0 947 -601 6 12 134 -198 
2-10 103 -86 7 4 273 297 2-19 146 194 6 13 213 -293 
2 -8 88 -61 7 6 192 -142 2-14 180 -169 6 14 137 -139 
2 -6 490 -627 7 7 236 -291 2-13 169 -141 6 19 80 62 
2 -3 481 -444 7 8 164 146 2 -9 321 -330 6 16 98 -110 
2 -4 379 -346 7 10 140 172 2 -8 387 394 7 1 191 -190 
2 -3 117 -119 7 12 116 121 2 -7 123 118 7 2 343 928 
2 -2 989 989 7 13 89 84 2 -6 296 344 7 3 412 391 
2 -1 479 -482 7 16 78 -109 2 -9 136 138 7 4 389 379 
3-16 118 124 * 8 0 169 -192 2 -4 491 -903 7 9 493 433 3-13 111 122 8 1 263 -261 2 -3 499 -490 7 7 193 162 
3-14 217 201 8 2 144 -199 2 -2 481 413 7 8 434 -426 
3-13 174 171 a 3 132 -146 2 -1 1039 1169 7 9 98 90 
3-11 77 -60 8 4 279 261 3-14 147 167 7 10 917 -997 
3-10 2â7 -273 8 6 300 294 3-12 103 -88 7 11 111 124 3 -8 192 -186 a 8 294 261 3-11 81 84 7 12 110 -122 3 -7 266 -261 a 11 194 107 3- 10 88 -78 a O 326 308 3 —6 910 860 8 12 148 -142 3 -9 197 196 8 1 319 268 3 -3 246 -221 8 14 94 -1 93 3 -7 119 -ISO 8 3 323 304 3 -4 103I 1069 9 1 363 -341 3 -6 907 -907 8 4 178 193 
3 —3 229 186 9 3 99 -109 3 -9 634 996 8 9 142 194 3 -2 219 230 9 7 119 -142 3 -4 409 416 a 6 132 120 3 -t 439 -437 9 a 114 -87 3 -3 943 993 8 8 104 -104 4 0 916 996 9 10 160 -176 3 -2 981 603 8 9 243 27! 
4-13 269 -244 10 0 283 -290 3 -1 431 460 8 1 1 189 219 
4-11 249 -230 10 1 209 -173 4 0 469 -467 8 12 99 106 4-10 137 -123 10 2 262 -273 4 14 230 -249 8 14 103 -124 

9 2 428 393 
9 3 136 146 
9 4 126 144 
9 7 228 218 
9 8 228 -238 
9 9 83 -86 
9 10 292 -309 
9 12 191 -248 

10 0 192 187 
10 1 120 74 
10 2 291 249 
10 3 247 222 
10 4 239 -224 
10 9 149 -124 
10 6 137 -194 
10 7 89 106 
10 8 118 -131 
10 9 171 202 
10 12 119 128 
11 4 98 103 
11 7 119 122 
12 0 237 229 
12 1 90 76 
12 2 93 100 
12 3 108 129 
12 4 103 -93 
12 a 149 -163 
13 7 91 -92 
14 0 294 289 
14 2 129 141 
14 3 80 -74 
19 1 93 -91 
19 2 292 -264 
19 6 96 -86 

L « ' -2 
H K FO FC 
0 0 1111-1237 
0-18 114 129 
0-19 224 223 
0- 14 130 -120 
0- 13 137 -128 
0-•12 293 -239 
0- 11 136 136 
0 -9 282 -293 
0 -a 918 898 
0 -6 729 696 
0 -4 917 -888 
0 -3 899 -941 
0 -2 383 -309 
o -1 1177 1347 
1-16 199 -163 
1-11 138 -114 
1- lO 96 92 
1 -9 71 92 
1 -8 901 466 
1 -7 300 -298 
1 -6 944 -938 
1 -9 172 169 

1 -4 286 -267 6 9 118 -106 
1 -3 199 144 6 6 463 -470 
1 -2 181 298 6 7 248 -244 
1 -1 988 -647 6 8 179 -190 
2 0 943 -630 6 9 112 -104 
2-14 184 -187 6 11 172 -183 
2-10 301 -273 6 12 278 301 
2 -8 249 -230 6 13 196 -233 
2 -7 228 198 6 14 91 92 
2 -6 926 474 7 1 95 -86 
2 -9 476 427 7 2 104 92 
2 -4 908 -948 7 3 109 -71 
2 -3 736 -779 7 4 276 233 
2 -2 2403--2694 7 9 68 96 
2 -1 290 318 7 7 298 236 
3-18 79 -94 7 8 129 -123 
3-16 104 -127 7 10 78 -89 
3-14 107 -87 7 11 101 -98 
3-12 118 113 8 0 207 197 
3-11 114 -111 8 1 117 -113 
3-10 178 136 8 2 201 206 
3 -9 263 241 8 3 373 371 
3 -a 198 128 8 4 329 -284 
3 -7 477 -499 8 9 186 186 
3 -6 140 -137 8 6 311 -303 
3 -9 292 283 8 8 372 -382 
3 -4 639 -628 a 14 110 123 
3 -3 320 -376 9 1 223 203 
3 -2 2129-2176 9 2 343 -320 
3 -1 939-1019 9 3 120 122 
4 0 926 92b 9 7 119 122 
4-16 100 -127 9 9 99 111 
4-14 111 123 9 10 107 113 
4-13 99 96 9 11 119 -149 
4-12 79 -36 10 0 428 414 
4-10 111 -111 10 3 113 120 
4 -7 901 437 10 4 196 202 
4 6 227 207 10 9 169 186 
4 -9 192 -161 10 6 184 -201 
4 -4 613 -378 10 9 142 -161 
4 -3 89 -118 10 10 103 -121 
4 -2 979 991 10 11 87 97 
4 -1 1121-1200 11 1 199 191 
9 2 332 330 11 2 99 -103 
9 3 249 242 11 3 112 120 
9 4 320 339 11 4 178 -173 
9 6 371 -337 11 9 80 86 
9 7 181 -179 11 7 89 -100 
9 a 233 -238 11 9 176 214 
9 9 383 376 • 11 10 167 190 
9 lO 423 -407 11 12 loi 194 
9 12 162 -173 12 0 83 81 
9 13 161 -190 12 1 130 121 
3 14 90 76 12 2 134 136 
9 16 83 69 12 3 163 -130 
6 0 328 319 12 3 131 122 
6 1 308 -206 13 2 326 -318 
6 2 171 166 13 4 167 -179 
6 4 93 -on 13 6 202 -219 
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14 0 102 -IM 3 s 128 130 
14 6 I09 07 9 3 184 -186 
14 e 176 170 9 4 341 -339 
19 1 -79 5 9 382 -379 
19 a 191 -143 5 6 79 -99 
16 0 181 -179 9 7 916 -909 
16 a 94 -94 5 a 390 -364 

5 9 76 74 
L - -1 5 10 77 ai 

H K FO FC 9 11 78 -79 
1-IB 94 -lia 9 13 137 177 
1-16 336 -349 9 14 98 -91 
1-13 " 176 -167 6 1 191 196 
1-ia B4 79 6 3 369 -367 
1 -9 86 70 6 3 140 -140 
1 -7 lia -1 13 6 4 1033-1019 
1 -6 906 -489 6 9 363 -397 
1 -9 1043-1009 6 6 339 -349 
1 -4 658 -734 6 7 194 -173 
t -3 1193 1336 6 8 413 -409 
1 -a 1676-1984 6 10 130 -110 
1 -1 423 -649 6 11 173 -186 
a 0 1793 9368 6 13 337 374 
2-14 314 199 6 16 107 194 
a -9 189 -196 7 1 333 -306 
a -0 367 -317 7 a 391 -334 
a -7 154 170 7 3 139 -119 
a -6 339 394 7 4 333 -347 
a -9 449 437 7 a 341 339 
a -4 474 -967 7 9 147 -166 
a -3 1097-1139 7 10 394 421 
a -a 938 -919 7 13 331 261 
a -1 133 -80 7 13 107 130 
3 19 84 06 7 19 84 94 
3-14 99 -127 7 16 83 -lOB 
3-ia 330 309 8 0 106 -1 14 
3-10 405 381 a 1 338 346 
3 -9 488 454 a 3 79 79 
3 -B 193 160 B 3 398 360 
3 -7 331 -313 B 4 103 -109 
3 -6 379 327 a 9 199 171 
3 -9 330 -235 B 6 79 -81 
3 -3 498 913 8 8 143 160 
3 -a 793 -816 a 9 77 -78 
3 -1 720 694 a 13 111 183 
4 0 1044-1060 9 1 119 103 
4-16 111 123 9 3 169 -198 
4-14 373 267 9 3 393 351 
4-ia 397 279 9 4 360 -393 
4-10 249 -326 9 9 205 -310 
4 -9 79 -92 9 6 137 -1 90 
4 -B 398 -377 9 7 SO 9 -193 
4  -7 139 133 9 8 497 433 
4 -6 947 -931 9 10 364 378 
4  - 4  7B8 -898 9 11 104 133 
4 -3 994 -947 10 3 239 -238 4 -a 136 112 10 3 104 -t 18 4 -1 373 300 10 4  193 178 
9  1 333 -331 10 9 380 -386 

10 6 423 410 
10 8 176 199 
10 11 143 -310 
10 13 lai -179 
11 4 94 -89 
11 9 139 130 
11 6 109 -99 
II a 101 82 
13 0 919 -903 
13 a 186 -180 
13 3 108 88 
12 9 191 -169 
13 6 349 341 
13 7 89 83 
13 a 168 189 
13 s 103 80 
13 4 340 390 13 9 109 103 
14 1 117 100 
14 3 126 -lie 
14 4 139 -143 
14 6 93 71 
14 a 90 74 
19 3 139 111 
16 1 113 133 

L o 0 
H K FO FC 
o-ia 111 -136 
0-16 lai -169 
0-14 319 319 
0-13 113 106 
0-10 94 84 
0 -8 181 199 
0 -6 993 974 
0 -a 994 471 
1-16 137 199 
1-13 311 197 
1-10 3ia 186 
1 -8 107 109 
1 -6 189 -179 
1 -4 1990 1489 
1 -a 1336 1470 
a 0 1318 1355 
a-14 333 313 
a-la 133 89 
a-10 169 -164 
3 -a 409 -419 
3 -6 146 -120 
3 -4 873 -839 
3 -3 708 736 
3-18 98 104 
3- 16 147 199 
3- 14 160 129 
3- 13 197 -140 
3- 10 681 -642 
3 - B  363 290 
3 -6 409 -406 
3  -4 1307 1 3 4 3  

4 0 493 324 L - 1 
4 16 164 170 H K FO FC 
4- 14 136 -151 7 6 74 -43 
4- 13 370 244 11 3 ai -91 
4 10 399 -323 15 4 99 -93 
4  -a 34 1 346 
4  ^6 919 914 L - a 
4 -4 996 -979 H K FO FC 
9 a 39a -316 0 17 96 -83 
9 4 209 -330 4 a 64 -36 
9 6 470 494 7 14 7a -109 
9 8 134 197 7 19 83 -136 
9 10 334 392 a la  93 88 
9 13 396 433 
6 0 994 -919 L - 3 
6 3 98 38 H K FO FC 
6 4 153 -144 9 1 67 -61 
6 6 913 497 
6 13 113 -94 L - 4 
7 4 317 301 H K FO FC 
7 6 346 -336 a-19 78 46 
7 a 359 393 a 9 67 -33 
7 10 88 101 9 4 93 -58 
a 0 453 403 
a 3 479 -4ia L " 9 
a 4 487 499 H K FO FC 
8 6 74 79 1 -3 99 -16 
8 8 319 334 13 3 83 -67 
a 13 338 -393 14 4 86 -80 
9 3 98 -73 19 3 76 78 
9 4 214 -319 
9 8 338 -393 L - 6 
9 10 317 -390 H K FO FC 
9 12 113 -139 6 13 87 68 
10 0 507 -479 14 0 97 -91 
10 a 399 -338 14 a 89 -89 
10 6 339 336 
10 a 139 169 L - 7 
11 4 970 999 H K FO FC 
11 6 388 409 3 -B 77 -7fl 
11 8 341 -407 
13 0 209 -187 L - a 
13 a 163 197 H K FO FC 
13 4 141 -130 1 -6 88 -77 
13 6 117 -116 7 3 76 94 
13 8 98 144 a 3 89 -87 
13 10 94 -119 
13 a 91 86 L - 9 
13 4 367 337 H K FO FC 
13 6 363 398 3 3 79 43 
13 8 123 -139 4--14 90 -99 
14 0 1 9 9  169 
1 4  3 2 4  3 343 L - 10 
14 B  9 2  -134 H K  FO FC 
19 3 1 4 1  -193 4-13 86 109 
19 4 218 329 a 3 89 -97 

9 10 78 89 
10 0 90 9 9  

. • 11 
K FO FC 
1 78 73 
3 84 -93 
3 78 94 
1 93 70 
3 79 -33 
3 74 -63 

. • 13 
K FO FC 
1 109 139 
•9 91 60 
7 69 -68 
a 76 -88 

. - 13 
K FO FC 
9 90 69 

. " 14 
K FO Ft 
8 80 100 
0 89 -90 
3 B7 -64 
7 81 -93 
3 74 73 

H 
1 
3 
3 
4  
7  
9 

H 
0 
S 
9  

10 

H 
4 

H 
3 
4 
4 
4 
9 
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APPENDIX 3: STRUCTURE FACTORS FOR 20 
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